
Design-for-Test: Scan and ATPG
Training

Student Workbook

December 2003

Copyright Mentor Graphics Corporation 2003. All rights reserved. This document contains information
that is proprietary to Mentor Graphics Corporation and may not be duplicated in whole or in part in any
form without written consent from Mentor Graphics. In accepting this document, the recipient agrees to

make every reasonable effort to prevent the unauthorized use of this information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.

A complete list of trademark names appears in a separate “Trademark Information” document.

This is an unpublished work of Mentor Graphics Corporation.

Part Number: 069814

Trademark Information

Mentor Graphics Trademarks
The following are trademarks of Mentor Graphics Corporation:

The following are service marks of Mentor Graphics Corporation:
TM-iii

Mentor Graphics’ trademarks may only be used with express written permission from Mentor Graphics. Fair use of Mentor
Graphics’ trademarks in advertising and promotion of Mentor Graphics products requires proper acknowledgement.

Third-Party Trademarks
The following names are trademarks, registered trademarks, and service marks of other companies that appear in Mentor
Graphics product publications:
TM-iv

Other brand or product names that appear in Mentor Graphics product publications are trademarks or registered trademarks of
their respective holders.

Updated 12/4/02
TM-v

TM-vi

TABLE OF CONTENTS

Table of Contents
About This Training Workbook ..xix

Introduction .. i-xix
Training Modules .. i-xx
Audience .. i-xxi
Prerequisite Knowledge .. i-xxii
Acronyms Used in This Workbook .. i-xxii
Customer Support Information .. i-xxiii

Module 1

Basic Concepts ...1-1

 Module Topics ...1-2
Why ManufacturingTest? ...1-3
What is Design-for-Test? ..1-5
Why Design-for-Test? ..1-6
Yield and Defect Levels ...1-7
Testing and Cost ...1-8
What is Testability? ..1-9
Types of Test ..1-12
Manufacturing Defects ...1-13
Fault Models ...1-14
Stuck-at Fault Model ..1-15
Transition Fault Model ...1-16
Path Delay Fault Model ..1-19
IDDQ Fault Model ..1-21
Scan Design ..1-22
Scan Cell Types ..1-23
Mux DFF Scan Cell ..1-24
LSSD Scan Cell ..1-25
Clocked Scan Cell ...1-26
Scan Chains ..1-27
Scan Based Designs ..1-28
Design-for-Test: Scan and ATPG Training vii
December 2003

TABLE OF CONTENTS (Cont.)

Table of Contents
Design Flow ..1-30
Test Flow ..1-31
Tool Flow ..1-32
DFTAdvisor Overview ...1-33
FastScan Overview ...1-34
Graphical User Interface ...1-35
Getting Help ..1-37
Unix and Kshell within the GUI ...1-38
Accessing SupportNet Material ..1-39
Customer Support ...1-40
Lab: Basic Concepts and DFT Flow ...1-41

Module 2

Full Scan DFT Flow ..2-1

Module Topics ..2-2
Scan and ATPG Flow ...2-3
Circuit Setup ...2-4
Gate-Level Netlist ...2-5
Auto Black Boxing for Incomplete Netlists ...2-6
Black Boxes ..2-7
DFT Library ..2-8
Creating a DFT Library ..2-9
Automatic Generation of DFT Libraries ..2-10
Include File Handling ...2-11
Invoking DFTAdvisor ..2-12
DFTAdvisor Tool Flow: An Overview ..2-13
Command Structure ..2-14
DFTAdvisor Tool Flow ..2-15
SETUP ..2-16
Scan/Test Logic Configuration ...2-19
Set Test Logic Configuration ..2-20
Adding Test Logic ..2-21
Design-for-Test: Scan and ATPG Trainingviii
December 2003

TABLE OF CONTENTS (Cont.)

Table of Contents
Set Test Logic Configuration (Defining Non-scan Areas)2-23
Design Rule Checking (DRC) ..2-24
DRC ..2-25
DRC Basics ...2-26
Types of DRCs ...2-28
Scan Specific DRCs ..2-29
DFTInsight ..2-30
Troubleshooting DRC Violations: Reporting S1 Fails2-31
Viewing the Problem: Analyzing S1 Violations ..2-32
Troubleshooting DRC Violations: Adding Clocks ...2-33
Troubleshooting DRC Violations: Reporting S2 Fails2-34
Viewing the Problem: Analyzing S2 Violations ..2-35
Troubleshooting DRC S2 Violation ..2-36
Viewing the Added TestClock Logic ...2-37
Scan Identification ..2-38
Scan/Test Logic Insertion ...2-39
Write Results ..2-41
FastScan Dofile ...2-42
Enhanced Procedure File ..2-43
Invoking FastScan ..2-45
FastScan Tool Flow an Overview ...2-46
FastScan Tool Flow ..2-47
SETUP ..2-48
FastScan ATPG in a DC Scan Insertion Flow ..2-50
 ATPG Setup Files ..2-51
DRC (FastScan) ..2-52
 Configuration ...2-53
Generate Patterns ..2-54
Create Patterns ..2-55
Save Results ..2-56
Saving Test Patterns ...2-57
Scan and ATPG Tool Flow ...2-58
Lab: Full Scan DFT Flow ...2-59
Design-for-Test: Scan and ATPG Training ix
December 2003

TABLE OF CONTENTS (Cont.)

Table of Contents
Module 3

Configuring Scan Chains/Test Logic and Full Scan Flow3-1

Module Topics ..3-2
Scan Methodology: Scan Cells ...3-3
Scan Methodology: Full Scan ...3-4
Scan Methodology: Full Scan Versus Partial Scan ..3-5
Scan Methodology: DFT library and Scan Identification3-6
Test Logic ...3-8
Test Logic: Defining Library Models ...3-11
 Pins ..3-12
Defining Pins ..3-13
Clocks ...3-16
Multiple Clock Issues ...3-17
Multiple Clocks: Minimizing Clock Skew ...3-19
Multiple Clocks ..3-22
Multiple Clocks: Merging Clock Edges ...3-23
Multiple Clocks: Merging Different Clocks ...3-24
Multiple Clocks: Using Lockup Latches ..3-25
Balancing Scan Chains ...3-26
Scan Chain Ordering and Stitching ..3-28
Scan Chain Ordering and Stitching Flow ...3-29
Scan Chain Stitching: Unstitched Scan Cells ...3-30
Scan Chain Stitching: Stitching Existing Scan Cells ..3-31
Lab: Configuring Scan Chains/Test Logic and Full Scan Flow3-32

Module 4

Understanding ATPGMessaging ...4-1

Module Topics ..4-2
Messages at Invocation ...4-3
Messages at Invocation: Warnings ...4-4
Design-for-Test: Scan and ATPG Trainingx
December 2003

TABLE OF CONTENTS (Cont.)

Table of Contents

Messages When Exiting Setup ...4-5
ATPG Reporting ...4-6
Special Messages in ATPG Reporting ...4-8
Test Coverage Reporting ..4-9
Test Coverage Reporting Fault Collapsing ...4-12
Determining the Cause of Undetected Faults ...4-13
Lab: Understanding ATPG Messaging ...4-16

Module 5

Achieving High Test Coverage ...5-1

Module Topics ..5-2
Methodologies: Initial Run (Fault Sampling) ...5-3
Methodologies: External Fault List ..5-4
Adding NOfaults ...5-5
FastScan’s Test Pattern Types ..5-6
Basic Scan Patterns ...5-7
Basic Scan Pattern Operation ...5-9
Clock Primary Output Patterns ...5-16
Clock Sequential Patterns ...5-18
Clock Sequential Pattern Operation ..5-21
RAM Sequential Patterns ...5-28
RAM Sequential Patterns Example: To Test For Stuck-At-0 at the Output of U1 .
...5-32
RAM Sequential Pattern Operation ..5-33
Multi Load Patterns ..5-37
Multi Load Patterns Example ...5-39
MacroTest Patterns ...5-41
MacroTest ...5-42
Memory BIST ...5-43
Test Pattern Type Summary ...5-44
Saving Patterns ...5-45
Reuse, Debugging, and Diagnostics ...5-46
Design-for-Test: Scan and ATPG Training xi
December 2003

TABLE OF CONTENTS (Cont.)

Table of Contents
Reuse, Debugging, and Diagnostics: ASCII and Binary Formats5-47
Reuse, Debugging, and Diagnostics: Reading ASCII Files Back into FastScan.5-48
Time-Based Verification ..5-49
Verification of Pattern Formats ..5-51
Manufacturing Test ...5-52
Lab: Achieving High Test Coverage ..5-53

Module 6

Creating High Quality Patterns at Low Cost ...6-1

Module Topics ..6-2
Quality and Cost ...6-3
Quality ..6-4
Cost ...6-5
At-Speed ATPG ..6-6
At-Speed ATPG and the Transition Fault Model ...6-8
At-Speed ATPG and the Path Delay Fault Model ..6-9
The Path Delay Model ..6-10
Transition Fault Patterns ...6-16
Creating Transition Fault Patterns: Launch-Off Shift6-17
Creating Transition Fault Patterns: Broadside ..6-18
Timing for At-Speed Test ...6-19
 Path Delay Pattern Flow ..6-21
Path Definition Files ...6-23
Creating Path Delay Patterns ..6-24
IDDQ Patterns ..6-25
Creating IDDQ Patterns ..6-26
Optimizing Quality and Cost ..6-28
ATE Characteristics ..6-30
Lab: Creating High Quality Patterns at Low Cost ..6-31

Module 7

Advanced ATPG ..7-1
Design-for-Test: Scan and ATPG Trainingxii
December 2003

TABLE OF CONTENTS (Cont.)

Table of Contents
Module Topics ..7-2
Black Boxes ..7-3
Black Box Examples ...7-4
Testing Embedded Blocks ..7-5
Testing Embedded Memories: MacroTest ..7-7
At-Speed MacroTest ...7-9
Testing Embedded Memories: Synchronous MacroTest7-10
Built-In Self-Test Basics ...7-12
Testing Embedded Memories: Memory BIST ...7-13
Testing Embedded Memories: Memory BIST Bypass7-14
Initialization Issues ...7-15
Initialization Example ...7-17
Auto Generate Test_Setup ..7-18
Boundary Scan Basics ..7-19
Boundary Scan Architecture ...7-20
Connecting Boundary Scan with Internal Scan ..7-21
Accessing Internal Scan Instructions ..7-23
Connecting Internal Scan to Boundary Scan Using BSDArchitect7-24
Top Up ATPG ...7-25
Top Up Patterns From BIST ...7-26
Diagnostics ...7-27
Diagnostics: FastScan ...7-28
Performing a Diagnosis ..7-29
Diagnostic Commands ..7-30
Diagnostics: Failure File ...7-31
Diagnostics Report ..7-32
Diagnostics Issues ...7-34
Lab: Advanced ATPG ..7-35

Module 8

Troubleshooting DRC and Simulation Mismatch ..8-1

Module Topics ..8-2
Design-for-Test: Scan and ATPG Training xiii
December 2003

TABLE OF CONTENTS (Cont.)

Table of Contents
Troubleshooting Areas of Low Coverage ...8-3
Hierarchy Browser ..8-4
Assessing the Problem ..8-5
Faults Classified as ATPG Untestable ..8-9
Faults Classified as Undetectable ...8-10
Addressing Aborted Faults ...8-11
Bus Contention ...8-13
Addressing Bus Contention ..8-14
Addressing Bus Contention: Types of Contention ...8-15
Debugging Bus Contention ...8-16
Fault-by-Fault AU Debugging: Report Testability Data Command8-17
Report Testability Data Command ...8-18
TieX (D5) ..8-19
Fault-by-Fault AU Debugging: Set Gate Report Command8-20
Set Gate Report Command -Constrain_Value ..8-21
Fault-by-Fault AU Debugging: Analyze Fault Command8-22
Fault-by-Fault AU Debugging: Report Test Stimulus Command8-23
Lab: Troubleshooting Areas of Low Test Coverage ..8-24

Module 9

Troubleshooting DRC and Simulation Mismatch ..9-1

Module Topics ..9-2
Analyzing DRC Violations: Commands ..9-3
Analyzing DRC Violations: Report Gates Command ..9-4
DRC Violations: E4 - Procedure (Bus Contention) ..9-5
Debugging E4 Violations ...9-6
E4 Contention on Bidirectionals ...9-7
Clocks ...9-8
Clock Cones ..9-9
Effect Cones ..9-10
Both Cones ..9-11
Clock Rules: C3 ..9-12
Design-for-Test: Scan and ATPG Trainingxiv
December 2003

TABLE OF CONTENTS (Cont.)

Table of Contents
DRC Violations: C3 ..9-13
FastScan Event Simulation ...9-14
Setting Event Simulation ..9-15
Handling C3 Violations ..9-16
Clock Rules: C6 ..9-17
Handling C6 Violations ..9-18
Data Rules: D5 ..9-19
Data Rules: D6 ..9-20
Handling D5 and D6 Violations ...9-21
Scan Chain Trace Rules: T3 ...9-22
Common Causes of T3 Errors ..9-23
Scan Chain Trace Rules: T5 ...9-24
Debugging T3 and T5 Violations ...9-25
Testbenches ...9-26
Serial Testbench ..9-27
Parallel Testbench ...9-28
Debugging Simulation Mismatches in FastScan ..9-29
DRC Violations: Simulation Mismatches ..9-30
When, Where, and How Many Mismatches ...9-31
Clock Skew Problems ...9-33
Timing Violations ...9-34
Library Problems ..9-35
Automatic Analysis of Simulation Mismatch ...9-36
Debugging Serial Simulation Mismatches: Chain Test9-38
Clock Skew in Chain Test ..9-39
Lab: Troubleshooting DRC and Simulation Mismatch9-40
Design-for-Test: Scan and ATPG Training xv
December 2003

TABLE OF CONTENTS (Cont.)

Table of Contents
Design-for-Test: Scan and ATPG Trainingxvi
December 2003

LIST OF FIGURES

Table of Contents
Figure 1-1. The DFT Graphical User Interface .. 1-44
Figure 1-2. Using Query Help ... 1-51
Figure 2-1. DFTAdvisor Control Panel ... 2-62
Figure 2-2. FastScan Tool Flow... 2-66
Figure 3-1. Connecting Existing Pins/Pads as Scan Inputs and Outputs 3-33
Figure 3-2. Balancing Scan Chains Using Lockup Latches .. 3-38
Figure 3-3. Scan Cell Order File ... 3-48
Figure 3-4. Scan Cell Reorder File .. 3-51
Figure 6-1. Copying the Timeplate.. 6-37
Figure 6-2. Renaming the Timeplate ... 6-38
Figure 6-3. Editing Timeplate.. 6-38
Design-for-Test: Scan and ATPG Training xvii
December 2003

LIST OF FIGURES (cont.)

Table of Contents
Design-for-Test: Scan and ATPG Trainingxviii
December 2003

About This Training Workbook
About This Training Workbook

Introduction
The Scan and ATPG Training course is designed to be a three-day, basic to
advanced level, instructor-led, “Design-for-Test process and Mentor Graphics tool
training” course.

The following are the top level course goals:

• The student will understand Design-for-Test design processes

• The student will gain experience with Scan and ATPG tool flow

• The student will understand how to find information and problem-solve
typical design issues

If taken in its entirety, this training course is intended to introduce design
engineers both to the field of Design-for-Test and the Mentor Graphics Design-
for- Test tool suite. It will educate designers to the basic theory of test, Design-
for-Test processes and Scan and ATPG tool flow
Design-for-Test: Scan and ATPG xxi

About This Training Workbook
Training Modules
1. Understanding ATPGMessagingUnderstanding

ATPGMessagingUnderstanding ATPGMessaging Basic Concepts and DFT
Flow

2. Full Scan and DFT Flow

3. Configuring Scan Chains/Test Logic and Full Scan Flow

4. Understanding ATPG Messaging

5. Achieving High Test Coverage

6. Creating High Quality Patterns at Low Cost

7. Advanced ATPG

8. Troubleshooting Areas of Low Test Coverage

9. Troubleshooting DRC and Simulation Mismatch
Design-for-Test: Scan and ATPGxxii

About This Training Workbook
Audience

Primary Audience

The target student profile is the Electronic Design Engineer using synthesis tools
to develop synchronous digital designs. It is assumed that students will be using
FastScan and DFTAdvisor in accordance with DFTInsight (as a debugging tool),
and optionally, FlexTest. This type of student will comprise about 80% of the
course attendees and will have the following characteristics:

• They have some limited familiarity with DFT terminology and concepts.

• They are required to use DFTAdvisor (or a similar product) to add full-scan
circuitry to their design.

• As they work with these DFT tools, these engineers want to know “what is
this tool doing to my design” (or my design flow) and “how do I control
what the tool is doing to my design?”

• These engineers want to know how to analyze the tool-generated reports
and modify the tool setup constraints to achieve the test goals that may be
imposed on them by their organization.

• These engineers want to be well grounded in the basic tool process flow and
be able to respond appropriately when the tools report “problems.”

Secondary Audience

About 20% of the students will be “test engineers.” These engineers are typically
members of a manufacturing test group or an internal CAD group that provides
support for design engineers. Test engineers are typically well grounded in their
understanding of DFT terms and concepts, but may not have had much exposure
to running design synthesis tools or DFT test insertion and ATPG tools. In other
words, they usually just get a set of test patterns handed to them by a designer and
it is their job to create the final test set and program the tester.
Design-for-Test: Scan and ATPG xxiii

About This Training Workbook
Test engineers are typically in the course to get a better understanding of their
customers (the design engineers), get experience running the tools, and get a
greater appreciation of the problems that the design engineers face.

Although the class is not explicitly “tuned” to this audience, test engineers will
profit greatly from this course and typically achieve their personal objectives in
taking the course.

Prerequisite Knowledge
Prerequisite knowledge in DFT fundamentals is required. The purpose of
requiring prerequisites is to (1) reduce “learning overload” which can happen
early in the course and (2) help the students move quickly toward learning tool
concepts and best practices for getting results.

Generic DFT concepts and terminology can be learned from sources outside
Mentor Graphics.

Acronyms Used in This Workbook
ATE Automatic Test Equipment

ATPG Automatic Test Pattern Generation

DFT Design for Test

BIST Built-In Self Test

DRC Design Rules Checking

GUI Graphical User Interface
Design-for-Test: Scan and ATPGxxiv

About This Training Workbook
Customer Support Information
Additional help is available from Mentor Graphics Customer Support using the
following phone numbers, email address, and internet site:

DirectConnect (M-F: 6am-5:30pm,
PST)

1-800-547-4303

SupportCenter Fax 1-800-684-1795

SupportNet-Email support_net@mentor.com

SupportNet-Web site http://www.mentor.com/supportnet

Mentor DFT Web site http://www.mentor.com/dft
Design-for-Test: Scan and ATPG xxv

About This Training Workbook
Design-for-Test: Scan and ATPGxxvi

Module 1
Basic Concepts

Objectives

Upon completion of this module, you will be able to:

• Understand basic Design-for-Test (DFT) technology.

• Explain design flow.

• Invoke the ATPG graphical user interface (GUI) and use many of its
features.

• Access reference information:

a. Using the help command.

b. Using online documentation to solve problem-solving issues.
Design-for-Test: Scan and ATPG Training 1-1
December 2003

Administrator
Highlight

Basic Concepts
 Module Topics

Notes:

1-2 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

 Module Topics

♦ This module addresses the following topics:
● Test
● Scan design
● Design flow
● DFT tools and tool flow
● GUI and getting help
● Accessing information
Design-for-Test: Scan and ATPG Training1-2
December 2003

Basic Concepts
Why ManufacturingTest?

Notes:

1-3 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Why ManufacturingTest?

♦ Density and performance issues:
● ITRS Roadmap 1999
Design-for-Test: Scan and ATPG Training 1-3
December 2003

Basic Concepts
Why Manufacturing Test? (Cont.)

Notes:

1-4 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Why Manufacturing Test? (Cont.)

♦ Design procedure challenges:
● Core-based, IP-reuse designs
● Large, distributed teams
● Multiple design levels and constraints
● Technology remapping and migration
Design-for-Test: Scan and ATPG Training1-4
December 2003

Basic Concepts
What is Design-for-Test?

Notes:

1-5 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

What is Design-for-Test?

♦ DFT strategies that:
● Improve quality by detecting defects
● Make it easier to generate vectors
● Reduce vector generation time
● Reduce cost
Design-for-Test: Scan and ATPG Training 1-5
December 2003

Basic Concepts
Why Design-for-Test?

Notes:

1-6 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Why Design-for-Test?

♦ To increase Productivity:
● Shorter time-to-market
● Reduced design cycle
● Reduced cost

♦ To improve Quality:
● Reduced Defects per million (DPM)
● Improved quality of test
Design-for-Test: Scan and ATPG Training1-6
December 2003

Basic Concepts
Yield and Defect Levels

Notes:

1-7 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Yield and Defect Levels

20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

0

Defect Level

Y = 0.1

Y = 0.25

Y = 0.5

Y = 0.75

Y = 0.9

Defect Coverage (%)

The graphical plot follows DL=1 -Y (Williams, IBM 1981)

 where:

d = defect coverage

DL (Defect Level) = Shipped parts that are bad in

Defective Parts per Million (DPM)

Y (Yield) = number of defect-free parts

d (Defect coverage) = # of defects detected / total # of defects

 (1-d)

Some guideline values, assuming
 DPM = 50:
 Y=> 60 80 90 95
 d => 99.99 99.97 99.95 99.90
Design-for-Test: Scan and ATPG Training 1-7
December 2003

Basic Concepts
Testing and Cost

Notes:

1-8 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Testing and Cost

♦ Low number of defective parts (DPM) is very critical
♦ Cost to replace parts grows exponentially throughout design

cycle
♦ Cost of bad part in critical device (for example, a pacemaker

or airplane) is immeasurable

$1

$10

$100

$1000

Analysis Design Test Field
Design-for-Test: Scan and ATPG Training1-8
December 2003

Basic Concepts
What is Testability?

Notes:

1-9 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

What is Testability?

♦ The ability to put a design into a known initial state, and then
control and observe internal signal values

♦ Circuit with DFFs:
● Low testability
Design-for-Test: Scan and ATPG Training 1-9
December 2003

Basic Concepts
What is Testability? (Cont.)

Notes:

1-10 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

What is Testability? (Cont.)

♦ Controllability:
● The ability to set a node to a specific value

♦ Observability:
● The ability to observe a node’s value

♦ Circuit without DFFs:
● Circuit is controllable

and observable
Design-for-Test: Scan and ATPG Training1-10
December 2003

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Basic Concepts
What is Testability? (Cont.)

Notes:

1-11 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

What is Testability? (Cont.)

♦ A highly testable design:
● A circuit that can be placed into a known initial state
● PIs are controllable
● POs are observable and measurable

♦ Circuit with DFFs replaced with MUX scan:
● A highly testable design
Design-for-Test: Scan and ATPG Training 1-11
December 2003

Administrator
Highlight

Basic Concepts
Types of Test

Notes:

1-12 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Types of Test

♦ Functional tests
● Verify circuit functionality
● Costly

♦ Structural tests
● Target manufacturing defects
Design-for-Test: Scan and ATPG Training1-12
December 2003

Administrator
Highlight

Administrator
Highlight

Basic Concepts
Manufacturing Defects

Notes:

1-13 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Manufacturing Defects

♦ Physical problems in silicon:
● Contamination-causing opens
● Extra metal-causing shorts
● Insufficient doping
● Process or mask errors
● Trace bridges
● Open vias
● CMOS stuck-on
● CMOS stuck-open
● Slow transistors

Contamination Extra metal
Design-for-Test: Scan and ATPG Training 1-13
December 2003

Basic Concepts
Fault Models

Notes:

1-14 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Fault Models

♦ Fault models:
● Stuck-at-fault
● Transition fault
● Path delay
● IDDQ
Design-for-Test: Scan and ATPG Training1-14
December 2003

Administrator
Highlight

Basic Concepts
Stuck-at Fault Model

Notes:

1-15 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Stuck-at Fault Model

♦ Fault models are logic
targets for defects

♦ A fault is detected:
● When a difference is

observed between a “good”
and “faulty” circuit

♦ Most common fault model:
● Most defects are detected

with the stuck-at fault
model

● A terminal of a gate is
permanently stuck-at 0 or 1

● Detects:
– Opens or shorts in the

interconnect
– Bridging faults
Design-for-Test: Scan and ATPG Training 1-15
December 2003

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Basic Concepts
Transition Fault Model

Notes:

1-16 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Transition Fault Model

♦ Delay fault model
● Slow-to-rise node
● Slow-to-fall node

♦ Involves at-speed testing (using scan chains)
♦ application of two cycles:

● Launch
● Capture

♦ Tests for gross time delay
♦ Detects:

● Partially conducting transistors
● Interconnections
Design-for-Test: Scan and ATPG Training1-16
December 2003

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Basic Concepts
Transition Fault Model (Cont.)

Notes:

1-17 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Transition Fault Model (Cont.)

♦ Functional gate
Design-for-Test: Scan and ATPG Training 1-17
December 2003

Basic Concepts
Transition Fault Model (Cont.)

Notes:

1-18 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Transition Fault Model (Cont.)

♦ Failing gate
Design-for-Test: Scan and ATPG Training1-18
December 2003

Basic Concepts
Path Delay Fault Model

Notes:

1-19 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Path Delay Fault Model

♦ Delay fault model:
● Slow-to-rise path
● Slow-to-fall path

♦ Involves at-speed application of two cycles:
● Launch
● Capture

♦ Tests for lumped time delay:
● sum of time delays that stack up

♦ Detects:
● Partially conducting transistors
● Diffusions
Design-for-Test: Scan and ATPG Training 1-19
December 2003

Administrator
Highlight

Basic Concepts
Path Delay Fault Model (Cont.)

Notes:

1-20 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Path Delay Fault Model (Cont.)

♦ Test sequence:
● Define a path
● Launch
● Capture
Design-for-Test: Scan and ATPG Training1-20
December 2003

Basic Concepts
IDDQ Fault Model

Notes:

1-21 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

IDDQ Fault Model

♦ Measures quiescent power supply current during the stable state
♦ Takes time, but attains 80-90% test coverage
♦ Detects:

● CMOS transistor stuck-on/some stuck-open conditions
● Bridging faults
● Partially conducting transistors
● ...

A

B Y

1/ 0
0

0/1
P1

P2
Y

1/0

N2B

A
0

0

N1 VSS

VDD

Faulty transistor stuck “on”
Design-for-Test: Scan and ATPG Training 1-21
December 2003

Administrator
Highlight

Administrator
Highlight

Basic Concepts
Scan Design

Notes:

1-22 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Scan Design

♦ Internal scan is a structured DFT technique that...
● Replaces sequential storage elements with scan cells
● Stitches scan cells into a serial scan register (scan chain)
● Makes sequential circuitry appear combinational
Design-for-Test: Scan and ATPG Training1-22
December 2003

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Basic Concepts
Scan Cell Types

Notes:

1-23 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Scan Cell Types

♦ Scan cell types:
● Mux DFF
● Level-Sensitive Scan Design (LSSD)
● Clocked Scan
Design-for-Test: Scan and ATPG Training 1-23
December 2003

Administrator
Highlight

Basic Concepts
Mux DFF Scan Cell

Notes:

1-24 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Mux DFF Scan Cell

♦ Multiplexer used to select data input:
● D in normal mode
● SI in scan mode

♦ Scan enable (SE) selects mode of operation
♦ Increased propagation delay
♦ Adds 5-15% area overhead

Original

Flip-Flop

CLK

D Q

Replaced by

MUX-D Scan Cell

SC_IN

CLK

D

SC_EN

Sout (Q)D
DFF

N_2 DFF 1

MUX 1
Design-for-Test: Scan and ATPG Training1-24
December 2003

Administrator
Highlight

Administrator
Highlight

Basic Concepts
LSSD Scan Cell

Notes:

1-25 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

LSSD Scan Cell

♦ Level-Sensitive Scan Design:
● Normal mode:

– The master latch captures
system data D using the
system (CLK) and outputs L1

● Test mode:
– The two non-overlapping

clocks (ENSA and ENSB) shift
data through the latches

– The scan output is SO

 ENSA

D

 CLK

Latch 1

D
 Master
 Latch

Slave
Latch

 Sin
 CLK

ENSB

Q

SO

Q

Original Latch

Replaced by LSSD Scan Cell
Design-for-Test: Scan and ATPG Training 1-25
December 2003

Administrator
Highlight

Administrator
Highlight

Basic Concepts
Clocked Scan Cell

Notes:

1-26 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Clocked Scan Cell

♦ Dedicated clock for shift
♦ Less propagation delay
♦ Non-scan cells are not disturbed during shift
♦ Reduced chance of clock skew

Original
Flip-Flop

CLK

D Q

CLK

D
Sin

S_clk

 Replaced by
Clocked-Scan Cell

Sout (Q)
Design-for-Test: Scan and ATPG Training1-26
December 2003

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Basic Concepts
Scan Chains

Notes:

1-27 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Scan Chains

♦ Scan Enable:
● When active allows scan data to enter the registers

♦ Scan Input port:
● Data is loaded into scan cells

♦ Scan Output port:
● Data is read by shifting data out
Design-for-Test: Scan and ATPG Training 1-27
December 2003

Basic Concepts
Scan Based Designs

Notes:

1-28 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Scan Based Designs

♦ Normal mode:
● Sequential elements perform regular system functions
Design-for-Test: Scan and ATPG Training1-28
December 2003

Basic Concepts
Scan Based Designs (Cont.)

Notes:

1-29 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Scan Based Designs (Cont.)

♦ Scan mode:
● Sequential elements are connected into one or more

shift registers
● Circuit appears combinational
Design-for-Test: Scan and ATPG Training 1-29
December 2003

Basic Concepts
Design Flow

Notes:

1-30 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Design Flow

(Iterations)
SYNTHESIS

SCAN
 INSERTION

DRC

DRC

ATE

RTL Design

Test
Patterns

Gate Level
Netlist

RTL Coding

DESIGN
REQUIREMENTS

ATPG

Manufacturing

Scan Inserted
Netlist
Design-for-Test: Scan and ATPG Training1-30
December 2003

Basic Concepts
Test Flow

Notes:

1-31 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Test Flow

ICs ATE

Scan Inserted
Netlist

ATPG with FastScanManufacturing
Design-for-Test: Scan and ATPG Training 1-31
December 2003

Basic Concepts
Tool Flow

Notes:

1-32 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Tool Flow

SYNTHESIS

DFTAdvisor

DRC

DRC

ATE

RTL Design

Test
Patterns

Gate Level
Netlist

RTL Coding

DESIGN
REQUIREMENTS

Scan Inserted
Netlist

FastScan

Scan Insertion

ATPG

Non-scan

D Q D Q D Q

CLK

SO

Y

A
B

Scan

A

SO

Y

D Q D Q D Q

B

SE
CLK

SI
Design-for-Test: Scan and ATPG Training1-32
December 2003

Basic Concepts
DFTAdvisor Overview

Notes:

1-33 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

DFTAdvisor Overview

♦ DFTAdvisor
● Full scan insertion tool

♦ Abilities:
● Testability analysis
● Design Rules Checking

(DRC)
● Test logic synthesis

SYNTHESIS

DFTAdvisor

DRC

DRC

ATE

RTL Design

Test
Patterns

Gate Level
Netlist

RTL Coding

DESIGN
REQUIREMENTS

Scan Inserted
Netlist

FastScan

Scan Insertion
Design-for-Test: Scan and ATPG Training 1-33
December 2003

Basic Concepts
FastScan Overview

Notes:

1-34 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

FastScan Overview

♦ FastScan
● Generates test patterns for

production test

♦ Abilities:
● Best suited for full-scan

designs
● Produces high test

coverage
● Generates compact pattern

sets
● Design rules checking

(DRC)

SYNTHESIS

DFTAdvisor

DRC

DRC

ATE

RTL Design

Test
Patterns

Gate Level
Netlist

RTL Coding

DESIGN
REQUIREMENTS

Scan Inserted
Netlist

FastScan

ATPG
Design-for-Test: Scan and ATPG Training1-34
December 2003

Basic Concepts
Graphical User Interface

Notes:

1-35 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Graphical User Interface

♦ All DFT tools use a similar Graphical User Interface (GUI)
♦ When you invoke a tool, it opens:

● The Main (Command line) window
● The Control Panel windows
Design-for-Test: Scan and ATPG Training 1-35
December 2003

Basic Concepts
Graphical User Interface (Cont.)

Notes:

1-36 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Graphical User Interface (Cont.)

♦ Main (Command line) window:
● Executes commands using:

– Pulldown menus
– Popup menus
– Command line

● Command transcripting
● Issues commands by following the 3-2-1 convention

♦ Control panel
● Graphical link to

– Functional blocks
– Process blocks
Design-for-Test: Scan and ATPG Training1-36
December 2003

Basic Concepts
Getting Help

Notes:

1-37 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Getting Help

♦ Types of Help:
● Query Help:

– Text-based messages on dialog box objects

● Popup Help:
– Text-based messages on Control Panel objects

● Tool Guide:
– Tool information

● Help menu:
– Lists different help topics and tool specific PDF manuals

● Command Usage:
– SETUP> HELp [command_name] [-manual]

– Use -manual switch to automatically open command page in PDF file

● Acrobat Reader
– mgcdocs
– shell> fastscan –manual OR
– shell> dftadvisor -manual
Design-for-Test: Scan and ATPG Training 1-37
December 2003

Basic Concepts
Unix and Kshell within the GUI

Notes:

1-38 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Unix and Kshell within the GUI

♦ To run Unix operating system commands
 within the DFT session:

● ATPG/SETUP/ ...> system [Unix command]

♦ To perform Kshell editing:
● ATPG/SETUP ...> set command editing -vi
Design-for-Test: Scan and ATPG Training1-38
December 2003

Basic Concepts
Accessing SupportNet Material

Notes:

1-39 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Accessing SupportNet Material

♦ Login required
♦ Documentation

● Release Notes
● Process Guides and

Reference Manuals
● Application Notes
● Tech Notes

♦ Software
● Releases
● Patches
Design-for-Test: Scan and ATPG Training 1-39
December 2003

Basic Concepts
Customer Support

Notes:

1-40 • Design-for-Test: Scan and ATPG:
Basic Concepts and DFT Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Customer Support

♦ DirectConnect (M-F: 6am -5:30, PST)
● 1-800-547-4303

♦ SupportCenter Fax
● 1-800-684-1795

♦ SupportNet website
● http://www.mentor.com/supportnet

♦ Mentor DFT website
● http://www.mentor.com/dft

♦ User Group
● Mentor Graphics User’s Group (MUG)

♦ Forums
● SupportNet-Email
Design-for-Test: Scan and ATPG Training1-40
December 2003

Basic Concepts
Lab: Basic Concepts and DFT Flow

Objectives

• Invoke the ATPG Graphical User Interface (GUI) and use many of its
features.

• Access information:

o Find different ways of getting help.

o Explore the help options in the Graphical User Interface (GUI) and
command line.

Lab Conventions

In order to make the lab instructions as simple and clear as possible, the
instructions use the following conventions:

• You usually just click mouse buttons unless specifically told to do
otherwise.

o LMB — left mouse button

o RMB — right mouse button

o MMB — middle mouse button

• Numbered or lettered steps have you perform some action. Paragraphs
without numbers only provide supplemental information or ask questions
for you to think about.

• You should usually exit the tool after a lab. At the beginning of each lab is a
“Getting Started” section that brings you to the correct state to perform the
next exercise. Some of the exercises build on each other in which case you
will be instructed to leave the tool up and running.
Design-for-Test: Scan and ATPG Training 1-41
December 2003

Basic Concepts
• If you have any problems or questions about a lab, ask your instructor for
help.

• Experiment!

List of Exercises

• Exercise 1: Using the Graphical User Interface (GUI)

• Exercise 2: Accessing Information

Getting Started

1. Get your user name and login from your instructor.

2. Go to your lab workstation and log in. You should be in the $HOME
directory when you login.

3. The directory structure is:

$ATPGNW is an environment variable set up under the home directory.

The libraries needed in the first four labs (exercises 1 — 10) are found in
directories libraries_1_to_4. The libraries needed for labs 5 and 6
(exercises 11 — 16) are found in directory libraries_5_to_6. The libraries
needed for the last three labs (exercises 17 — 22) are found in directory
libraries_7_to_9.
Design-for-Test: Scan and ATPG Training1-42
December 2003

Basic Concepts
Change to the $ATPGNW/lab1 directory.

shell> cd $ATPGNW/lab1

Exercise 1: Using the Graphical User Interface (GUI)

Design-for-Test (DFT) tools use both the command line and the GUI. In this
exercise, you invoke the FastScan GUI and gain experience using many of its
common features.

1. Invoke FastScan.

shell> fastscan

This invokes the FastScan Invocation Arguments dialogue box.You must
enter a design, a design format, and an ATPG library to invoke the GUI.

a. Enter the following in the appropriate dialogue box. You must enter a
design, a design format, and an ATPG library in order to invoke the
GUI.

Design: pipe_scan.v

Design Format: Verilog

Library: libraries_1_to_4/adk.atpg

b. Both the Main and Control Panel windows are now open.
Design-for-Test: Scan and ATPG Training 1-43
December 2003

Basic Concepts
Figure 1-1. The DFT Graphical User Interface

FastScan has compiled the DFT library and read in the Verilog netlist.
Comments to this effect are displayed in the session transcript area.

A SETUP> prompt precedes the command line to indicate that you are
in the Setup mode.

2. Examine the GUI.

a. Move both windows at the same time by clicking and holding the LMB
in the title bar of the Main window.

b. Next move the cursor over a functional block in the Control Panel
window. What happens?

What does that indicate?_____________________________________

3. Examine the Main window.

Main Window Control Panel

Pulldown

Menus

Command

Line

Command

Transcript

Session

Transcript

Graphics

pane

Task Flow

Manager

pane

Functional

Process Flow

block

Button

pane
Design-for-Test: Scan and ATPG Training1-44
December 2003

Basic Concepts
The Main window provides several ways to issue commands:

• Pulldown and popup menus

• The command line

a. Examine the pulldown menus. Use them to:

i. Open the pipe_scan.v file in Read Only mode. (File menu)

ii. Open the Setup Circuit Clocks dialogue box. (Setup menu)

What does the Turn on Query Help button do?

__

Use the Turn on Query Help button to find the purpose of the
Automatically Identify and Add button:

__

Click Cancel to exit; do not implement anything.

iii. Investigate other Setup menu options using the Turn on Query
Help button.

Click Cancel each time to exit; do not implement anything.

iv. Select Report > Environment to identify the current chosen
options. Where does the report appear?

v. Disable the tracking between the Control Panel and Main windows.
(Windows menu)

vi. Load the Hierarchy Browser to explore the hierarchy of the design.
(Windows menu)
Design-for-Test: Scan and ATPG Training 1-45
December 2003

Basic Concepts
What happens when you click on an instance in the Hierarchy
Browser?

__

You can close the Design Hierarchy Browser when you are
finished exploring the design.

vii. Investigate the online manual to explore help options (Help menu).

Select Help > On Commands > Open Reference Page

What is the function of the Add Clocks command?

__

viii. You also can get help with command usage by typing the Help
command followed by the command name at the SETUP > prompt.
Use this method to get information on the Add Clocks
command:__

ix. What happens when you type Help Add <enter> at the
SETUP > prompt?

Note that the help query is not case-sensitive.

b. Examine the Session Transcript area.

The Session Transcript area lists all commands performed and tool
messages in different colors. It provides a running log of your session.

i. Use the Scan and ATPG Process Guide in the DFT Bookcase to find
the answers to the following questions. (Help menu)

What colors are used for the following types of messages?

• Commands that have been issued: ___________________________
Design-for-Test: Scan and ATPG Training1-46
December 2003

Basic Concepts
• Error messages:__

• Warning messages: _______________________________________

• Any other output message, e.g. information: ___________________

ii. Investigate the popup menu in the Session Transcript using the
RMB.

Try out the various menu options and fill in Table 1-1.

iii. Save the transcript as a file called transcript1.

c. Examine the Command Transcript area.

This area lists all the commands you have performed, thus providing a
running log of your session.

i. Investigate the popup menu in the Command Transcript area.

Table 1-1. Session Transcript Popup Menu Items

Menu Item Description

Word Wrap

Clear Transcript

Save Transcript

Font

Copy Selection

Open Selected File

Exit Terminates the application tool program
— do not try yet!

Note

Helpful Tip: In the session transcript, you re-enter a
command in the command line by clicking and dragging the
LMB to highlight the command, then click the MMB to
place it in the command line.
Design-for-Test: Scan and ATPG Training 1-47
December 2003

Basic Concepts
Try out the various menu options and fill in Table 1-2..

d. Examine the command line.

If you are more command oriented, using the command line is another
way for you to issue commands to the DFT product.

All of the commands follow the 3-2-1 minimum typing convention.
That is, at a minimum you must specify the first three letters of the
word, the first two letters of the second word, and the first letter of the
last word(s). Minimum typing is not case sensitive, but is usually
specified by capital letters. For example, the command Analyze Control
Signals can be minimally entered in FastScan as “ANA CO S” or “ana
co s”.

i. Type REPort DRc Rules at the command line prompt to identify
the DRC status of the design.

Table 1-2. Command Transcript Popup Menu Items

Menu Item Description

Clear Command
History

Save Command
History

Previous Command
Ctrl+P

Next Command
Ctrl+N

Exit Terminates the application tool program — do
not try yet!.

Note

Helpful Tip: You can repeat a command by double-clicking
the command in the Command Transcript.
Design-for-Test: Scan and ATPG Training1-48
December 2003

Basic Concepts
ii. Click once on the REPort DRc Rules in the Command
Transcript area and note that the tool enters this at the command line
prompt.

iii. Double click on the REPort DRc Rules in the Command
Transcript area. What happens?

iv. Click the RMB in the command line to see the command line popup
menu.

Try out the various menu options and fill in Table 1-3.

4. Examine the Control Panel window.

The Control Panel window provides a graphical link to either the functional
blocks pane where you can modify the setup, or the flow process pane from
which you can modify your run. The window also presents a series of
buttons that represent the actions most commonly performed.

a. Examine the Graphics pane area.

The Graphics pane is located on the left of the Control Panel window.
The Graphics pane can either show the functional blocks that represent
the typical relationship between a core design and the logic being
manipulated by the DFT product, or show the process flow blocks that

Table 1-3. Command Line Popup Menu Items

Menu Item Description

Cut

Copy

Paste

Delete

Select All

Key Bindings
Design-for-Test: Scan and ATPG Training 1-49
December 2003

Basic Concepts
represent the group of tasks that are part of the DFT product session.
Some tools, such as DFTAdvisor or FastScan, have an additional
graphics pane at the bottom of the window that changes based on your
step in the process. It is called the Task Flow Manager pane.

Examine the Button pane area.

The Button pane is located on the right of the Control Panel window.
It provides a list of actions commonly used while running the tool.
You can click the LMB on a button to perform the task, or you can click
the RMB on that button for Popup Help specific to that button.

Leave the tool running and go on to the next exercise.

Exercise 2: Accessing Information

There are many different types of online help available. The different types
include query help, search query, popup help, information messages, Tool Guide
help, command usage, online manuals, and the Help menu.

All DFT documentation is available online using Adobe Acrobat Reader. You can
browse documents or have a document open to a specific page containing the
information on a specific command.

Also, you can access Application and Tech Notes to problem solve specific DFT
tool issues from the SupportNet website.

This exercise allows you to explore how to get help in many ways, but does not
include accessing the SupportNet website. Access to the web is not provided on
the student workstations.

1. FastScan should still be running from the last exercise. If not, invoke it by
following the steps in the last exercise.

2. Accessing help:

a. Query Help: Setup options are available by clicking on any Functional
Process Flow block in the Graphics pane as well as from the Setup
Design-for-Test: Scan and ATPG Training1-50
December 2003

Basic Concepts
menu in the Main window. Use an alternative method to access Query
Help in the Setup Internal Circuitry Behavior dialogue box.

Figure 1-2. Using Query Help

When you have finished investigating this mode, close the box by
selecting Cancel.

b. Popup Help: This is available on all active areas of the Control Panel.
Using the RMB, click on a functional block, process block or button.

To remove the help window, click on the inside of it using the right or
left mouse button. An alternative method to close the window is to
press any key except the spacebar while the Control Panel window is
active.

c. Informational Messages: Some dialogue boxes contain these to help
you understand more about the use of the box or its options.

1. Click here to enable Query Help

2. Click here to popup the help window
Design-for-Test: Scan and ATPG Training 1-51
December 2003

Basic Concepts
Examine some of these to find out the types of messages provided.
Load the Setup Circuit Clocks dialogue box. (LMB on Clocks
functional block)

Examine some other dialogue boxes. Always click Cancel when you
are done.

a. Tool Guide: Only available for DFTAdvisor, FastScan and FlexTest.
Find answers to certain questions on the flow within the tool.

 Informational Message
Design-for-Test: Scan and ATPG Training1-52
December 2003

Basic Concepts
Open the tool guide. (Help menu) Explore the guide. Which topic from
What Would You Like Help On? do you find the topic What is DFT?
(Hint: you have to click on one of the topics in the ..Help On? pane to
find it.)

b. Command Usage: Get command syntax from the command line using
the Help command followed by the full or partial command name.
Examples:

 SETUP> Help add

 (Lists all add commands.)

 SETUP> Help add clocks

 (Gives command syntax for this command.)

 SETUP> Help add clocks -manual

 (Opens the reference page for this command.)

Try this out on some commands.

c. Online Help: Application documentation is provided online in PDF
format. Open manuals using the Help menu or the Go To Manual in
the Query Help messages.

You also can open a separate shell window to open a PDF viewer:

 shell> mgcdocs

This command brings up the Mentor Graphics Bookcase. There is a
search facility available in the viewer under the MGC menu. (Unix
only. At present, Adobe does not support multiple-document, full-text
search in Acrobat on the Linux platform. Linux users may have to use
the Find function in individual documents.)
Design-for-Test: Scan and ATPG Training 1-53
December 2003

Basic Concepts
Use online help and the search facility to answer the following
questions.

i. What is the purpose of the enhanced procedure file?

ii. Find out what the -Auto_fix switch does when used with the
Analyze Control signals command.

iii. Investigate other documentation and close the PDF reader when you
are finished.

d. If you have not exited the tool, do so now.

e. You can invoke DFT documentation quickly from the shell prompt
before the tool is up and running by using its shell invocation along
with the -manual switch.

shell> fastscan -manual

You may continue to investigate the documentation or close the reader.

f. SupportNet: This option is available with Internet access. (Not in this
exercise.) Visit www.mentor.com/supportnet/ when you have the
opportunity.
Design-for-Test: Scan and ATPG Training1-54
December 2003

Basic Concepts
Test Your Knowledge (Optional)

1. List two ways to issue commands in the command line window.

__

2. How do you disable main window tracking?

__

3. What is the significance of commands and tool messages in red text?

__

4. How do you get the Command Transcript Popup box to appear?

__

5. How can you get help with commands using the command line?

__

6. What is the difference between functional blocks and process blocks in the
Graphic Pane?

__

7. List various ways to access online help.

__

__

__
Design-for-Test: Scan and ATPG Training 1-55
December 2003

Basic Concepts
Lab Summary

Now that you have completed the Basic Concepts and DFT flow lab, you should
know:

• How to invoke FastScan.

• How to use many of the features of the Graphical User Interface. (GUI)

• How to get help with commands and tool usage.
Design-for-Test: Scan and ATPG Training1-56
December 2003

Module 2
Full Scan DFT Flow

Objectives

Upon completion of this module, you will be able to:

• Explain the basic process of scan insertion and pattern generation.

• Describe how DFTAdvisor changes the design.

• Use DFTAdvisor to insert full scan.

• Write a scan-inserted netlist file.

• Write ATPG setup files.

• Use DFTInsight to troubleshoot minor DRC violations.

• Use FastScan to create, compress, and save patterns.
Design-for-Test: Scan and ATPG Training 2-1
December 2003

Full Scan DFT Flow
Module Topics

Notes:

2-2 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Module Topics

♦ This module addresses following topics:
● Scan and ATPG flow
● DFTAdvisor tool flow
● DRC and DFTInsight
● FastScan tool flow

Gate Level
Netlist DFT Library

Simulation
Library

DFTAdvisor

Verification

Setup Files

SCAN
INSERTION

Test Patterns

Scan Inserted
Netlist

ATPG

FastScan
Design-for-Test: Scan and ATPG Training2-2
December 2003

Full Scan DFT Flow
Scan and ATPG Flow

Notes:

2-3 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Scan and ATPG Flow

Verification

DRC

Gate Level
Netlist DFT Library

Setup Files

Test Patterns

Scan Inserted
Netlist

ATPG

Simulation
Library

DRC

DFTAdvisor

FastScan

Scan
 Insertion

SYNTHESIS

SCAN
 INSERTION

DRC

DRC

ATE

RTL Design

Test
Patterns

Gate Level
Netlist

RTL Coding

Design
Requirements

Scan Inserted
Netlist

ATPG
Design-for-Test: Scan and ATPG Training 2-3
December 2003

Full Scan DFT Flow
Circuit Setup

Notes:

2-4 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Circuit Setup

♦ What you have:
● A gate-level (non-scan) netlist
● A DFT library:

– Used by DFTAdvisor
– Used by FastScan

Gate Level
Netlist DFT Library

Simulation
Library

DFTAdvisor

Verification

Setup Files

SCAN
 INSERTION

Test Patterns

Scan Inserted
Netlist

ATPG

FastScan
Design-for-Test: Scan and ATPG Training2-4
December 2003

Full Scan DFT Flow
Gate-Level Netlist

Notes:

2-5 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Gate-Level
Netlist

P/O Gate Level Netlist

Gate Level
Netlist DFTAdvisor

Verification

DFT Library

Setup Files

SCAN
 INSERTION

Test Patterns

ATPG

Simulation
Library

FastScan

Scan Inserted
Netlist

Module top (in1,in2
 input in1;
 DFF U1 (.pre(set),…
 DFF U2 (.pre(set1),…
 Mux.scan cell U100
...
Design-for-Test: Scan and ATPG Training 2-5
December 2003

Full Scan DFT Flow
Auto Black Boxing for Incomplete
Netlists

Notes:

2-6 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Auto Black Boxing for Incomplete Netlists

 Setup

Configuration

Generate
 Patterns

Save Results

Design Rule
Checking

Enhanced
Procedure FileFastScan DofileScan Inserted

Netlist

 Setup

Design Rule
Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT LibraryNon-scan
Netlist

DFTAdvisor

FastScan

Patterns
Design-for-Test: Scan and ATPG Training2-6
December 2003

Full Scan DFT Flow
Black Boxes

Notes:

2-7 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Black Boxes
♦ Allow analysis of incomplete

designs.
● Isolates analog blocks.
● Isolates proprietary IP.

♦ Warns of undefined model
instances.

● The undefined model is not
black boxed.

♦ Use the ADD BLack Box
-Auto command to black box
all undefined models.

// FastScan v8.9_3.10 Fri Jun 8 13:13:39 PDT 2001
// Copyright (c) Mentor Graphics Corporation, 1992-2001, All Rights Reserved.
// UNPUBLISHED, LICENSED SOFTWARE.
// CONFIDENTIAL AND PROPRIETARY INFORMATION WHICH IS THE
// PROPERTY OF MENTOR GRAPHICS CORP OR ITS LICENSORS.
//
// USE OF THIS SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS.
//
//
// Mentor Graphics software executing under Sun SPARC SunOS.
// 32 bit version
//
// Compiling library ...
// Reading Verilog Netlist ...
// Reading Verilog file top.v
// Finished reading file top.v
// Warning: Following modules are undefined:
// BU110
// TDN1J
// DPL61
// AN220
// Use "add black box -auto" to treat as black boxes
// command: set sys m atpg
// Error: Instance of undefined model found, check black

box warnings and use Add Black Box -auto to
make these default black box models

//
// command: report blac box -undefined
// Undefined Modules:
// BU110
// TDN1J
// DPL61
// AN220
//

// command: ADD BLack Box -Auto
…

Design-for-Test: Scan and ATPG Training 2-7
December 2003

Administrator
Highlight

Administrator
Highlight

Full Scan DFT Flow
DFT Library

Notes:

2-8 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

DFT Library
DFT Model Description
of Scan Cell (DFF)

Which maps non-scan models (DFF)
 to library replacements:
 Mux_Scan_Cell Library Model

SC_IN

CLK

D

SC_EN
Sout (Q)D

DFF

PRE

CLR

N_2

MUX 1

DFF 1

Verification

Gate Level
Netlist

Setup Files

SCAN
 INSERTION

Test Patterns

Scan Inserted
Netlist

ATPG

Simulation
Library

DFT Library

//==
Model: DFF
//===
model DFF (PRE,CLR,CLK,D, Q, QB) (
input (PRE, CLR, D) ()
 input(CLK) (clock = rise_edge;)
 output(Q QB) (primitive = _dff(PRE,CLR,CLK,D,QB);
)
//===
Model: MUX_SCAN _CELL
//==
model MUX_SCAN_CELL (PRE, CLR, SC_IN, SC_EN, CLK, D, Q,
QB) (
 scan_definition (
 type = mux_scan
 scan_in = SC_IN;
 scan_enable = SC_EN;
 scan_out = Q, QB;
 non_scan_model = DFF (PRE, CLR, CLK, D, Q, QB);
)
 input (PRE, CLR, SC_IN, SC_EN, CLK ()
 intern(N_2) (primitive = _mux mux1 (D, SC_IN,
SC_EN,N_2);)
 output(Q, QB) (primitive = _dff dff1(PRE, CLR, CLK,
N_2, Q, QB);)
)
//==
Design-for-Test: Scan and ATPG Training2-8
December 2003

Full Scan DFT Flow
Creating a DFT Library

Notes:

2-9 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Creating a DFT Library

♦ Check for existing library from
vendor.

♦ Contact Steve Shostek if can’t
find.

♦ Use Libcomp to make a dft lib
from Verilog.

♦ Tech Mkg. will help with any
library conversion issues.

 Setup

Configuration

Generate
 Patterns

Save Results

Design Rule
Checking

Enhanced
Procedure FileFastScan DofileScan Inserted

Netlist

 Setup

Design Rule
Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT LibraryNon-scan
Netlist

DFTAdvisor

FastScan

Patterns
Design-for-Test: Scan and ATPG Training 2-9
December 2003

Full Scan DFT Flow
Automatic Generation of DFT Libraries

Notes:

2-10 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Automatic Generation of DFT Libraries

ATPG
lib

Verilog
simulation

 lib libcomp
 add model -all

set sys m tran
run
wri lib atpglib

do_file

libcomp <verilog_file> -dofile <file_name>

■ Automatically converts Verilog simulation
library
— Translates and optimizes UDPs
— Automated verification of translated models &

reports coverage per model
— Reduces the effort in creating an ATPG library
Design-for-Test: Scan and ATPG Training2-10
December 2003

Full Scan DFT Flow
Include File Handling

Notes:

2-11 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Include File Handling

■ Relative paths resolved from including file
■ Allows locating including and included files in

a directory using simple include text
■ Backward compatibility still finds files in CWD
■ Warning given if file found in both locations
■ Applies to netlists, DFT Libraries, dofiles

■ Example: fastscan vlog/topfile.v

 If topfile.v contains ‘include “block1.v” it will be
found in vlog directory as expected.
Design-for-Test: Scan and ATPG Training 2-11
December 2003

Full Scan DFT Flow
Invoking DFTAdvisor

Notes:

2-12 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Invoking DFTAdvisor

♦ The DFTAdvisor executable
resides in the Mentor Graphics
tree at:

● $MGC_HOME/bin/dftadvisor

♦ Invocation requirements:
● A design netlist in one of the

following formats:
– Verilog
– VHDL
– EDIF
– TDL

● DFT library

Invocation:
shell> dftadvisor design.v -verilog \
-lib dft.lib -log transcript.log -replace

Use the -Log <filename> option:
 to write detailed session information to a file

Helpful tip
Design-for-Test: Scan and ATPG Training2-12
December 2003

Full Scan DFT Flow
DFTAdvisor Tool Flow: An Overview

Notes:

2-13 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

DFTAdvisor Tool Flow: An Overview

Enhanced
Procedure File

FastScan DofileScan Inserted
Netlist

 Setup

Design Rule
Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT Library
Non-scan

Netlist

design.v dft.lib

Verification

Gate Level
Netlist DFT Library

Setup Files

Test Patterns

Scan Inserted
Netlist

ATPG

Simulation
Library

DFTAdvisor

FastScan

Scan
 Insertion
Design-for-Test: Scan and ATPG Training 2-13
December 2003

Full Scan DFT Flow
Command Structure

Notes:

2-14 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Command Structure

♦ DFTAdvisor and FastScan
use this command
structure:

● >ADD
(to define a condition)

● >REPort
(to display anything added)

● >DELete
(to remove a condition)

● >SET/SETup
(to define global settings)

● >WRIte/SAVe
(to generate files)

> ADD PIn Constraint Input1 C1

> ANAlyze COntrol Signals -Auto_fix

> REPort CLocks
Design-for-Test: Scan and ATPG Training2-14
December 2003

Full Scan DFT Flow
DFTAdvisor Tool Flow

Notes:

2-15 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

DFTAdvisor Tool
 Flow

SETUP> ADD PIn Constraints
 primary_input_pin {C0|C1|CZ|CX|CR0|CR1}
SETUP> ANAlyze COntrol Signals -Auto_fix
 (or use ADD CLocks)

// typically use defaults

SETUP> SET SYstem Mode Dft

DFT> RUN

DFT> INSert TEst Logic -NUmber 8

DFT> WRIte NEtlist scan_design.v -Verilog

DFT> WRIte ATpg Setup scan_design
DFT> VERify SCan
DFT> EXIt

Commands:

Enhanced
Procedure FileFastScan DofileScan Inserted

Netlist

 Setup

Design Rule
Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT Library

scan_design.v scan_design.dofile scan_design.procfile

Non-scan
Netlist

design.v dft.lib

Setup information
 for FastScan
Design-for-Test: Scan and ATPG Training 2-15
December 2003

Full Scan DFT Flow
SETUP

Notes:

2-16 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

SETUP

♦ FIRST: Define pin constraints
● Pin constraints are signals that are held at a

constant value during test
SETUP> ADD PIn Constraint control\\
C1 constrain to constant 1

Enhanced
Procedure File

FastScan Dofile
Scan Inserted

Netlist

 Setup

Design Rule
Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT Library
Non-scan

Netlist

D Q
S

R

r_n

control

clk

set

DFTAdvisor
Design-for-Test: Scan and ATPG Training2-16
December 2003

Full Scan DFT Flow
SETUP (Cont.)

Notes:

2-17 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

SETUP (Cont.)

♦ SECOND: Define clocks
● Clocks are primary input signals

that asynchronously change the
state of sequential logic elements

– clocks
– sets
– resets
– RAM read/write clocks

SETUP> ADD Clock 0 clk set

SETUP> ADD Clock 1 r_n

D Q
S

R

r_n

control

clk

set

Off state Primary input pin
Design-for-Test: Scan and ATPG Training 2-17
December 2003

Full Scan DFT Flow
SETUP (Cont.)

Notes:

2-18 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

SETUP (Cont.)

♦ The ANAlyze COntrol Signals command identifies and
optionally defines primary inputs of control signals

● Use the -Auto_fix option to automatically define all
identified primary inputs
SETUP> ANAlyze COntrol Signals -Auto_fix

Helpful tip
Design-for-Test: Scan and ATPG Training2-18
December 2003

Administrator
Highlight

Full Scan DFT Flow
Scan/Test Logic Configuration

Notes:

2-19 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Scan/Test Logic Configuration

♦ Perform Scan/Test Logic Configuration
● Default settings exist
● User can specify

– Scan methodology
– Test pin namings
– Areas not to be scanned
– Test logic options
– Existing scan
– Circuit clocks

Enhanced
Procedure File

FastScan Dofile
Scan Inserted

Netlist

 Setup

Design Rule
Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT Library
Non-scan

Netlist DFTAdvisor
Design-for-Test: Scan and ATPG Training 2-19
December 2003

Full Scan DFT Flow
Set Test Logic Configuration

Notes:

2-20 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Set Test Logic Configuration

♦ User defined setting options in SETUP mode:
● Scan Methodology

 SET SCan Type {Mux scan | Lssd | Clocked_scan}

● Test Pin namings:
SETup SCan Insertion -SEN -TEn

SETup SCan Pins {Input | Output}

ADD SCan Pins chain_name scan_input_pin scan_output_pin
[Clock pin_name]

● Test Logic Options
 SET TEst Logic

 -Clock {ON | OFf}| -Tristate { ON | OFf | Decoded } |

 -Bidi {ON

 -Ram {ON | OFf}
 } …

● Areas not to scan
ADD NONscan Instances pathname… {-INStance |
-Control_signal | -Module}

{ -Set {ON | OFf } | -Reset { ON | OFf } |

 | | Scan | OFf
Design-for-Test: Scan and ATPG Training2-20
December 2003

Full Scan DFT Flow
Adding Test Logic

Notes:

2-21 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Adding Test Logic

♦ Some designs contain uncontrollable clock circuitry

♦ Test logic is added to make the circuit scannable
Design-for-Test: Scan and ATPG Training 2-21
December 2003

Full Scan DFT Flow
Adding Test Logic (Cont.)

Notes:

2-22 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Adding Test Logic (Cont.)

Non-Scannable Scannable

♦ Required modifications:
● Specify which types of control lines are controllable

SETUP> SET Test Logic -Set ON -Clock on

● Disable set/reset
SETUP> ADD CEll Models -Type OR <cell name>

● Activate test mode with “test enable” signal
SETUP> ADD CEll Models -Type MUX selector data0 data
<cell name>

– Or: gates for test logic can be defined by “cell-type” in the library model
Design-for-Test: Scan and ATPG Training2-22
December 2003

Full Scan DFT Flow
Set Test Logic Configuration (Defining
Non-scan Areas)

Notes:

2-23 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Set Test Logic Configuration
(Defining Non-Scan Areas)

♦ Excluding the TAP controller from scan

SETUP>ADD NOnscan Instance /TOP/TAP_C -IN

TOP

CORE 2

TAP_C

CORE 1

TOP

Before Run After Run

TAP_C

Scan-inserted

Non-scanned
Design-for-Test: Scan and ATPG Training 2-23
December 2003

Full Scan DFT Flow
Design Rule Checking (DRC)

Notes:

2-24 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Design Rule Checking (DRC)

♦ Perform DRC
SETUP> SET SYstem Mode Dft

♦ This command does the following:
● Exits SETUP mode
● Performs DRC

Enhanced
Procedure File

FastScan Dofile
Scan Inserted

Netlist

 Setup

Design Rule
Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT Library
Non-scan

Netlist DFTAdvisor
Design-for-Test: Scan and ATPG Training2-24
December 2003

Full Scan DFT Flow
DRC

Notes:

2-25 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

DRC

♦ DFT tools perform DRC to ensure
 the following:

● Correct scan operation
● Proper handling of special design situations
● Correct syntax and operation of test procedure file

♦ 8 types of rules check over 150 DRC violations
● DRCs
● Scan-specific DRCs
Design-for-Test: Scan and ATPG Training 2-25
December 2003

Administrator
Highlight

Full Scan DFT Flow
DRC Basics

Notes:

2-26 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

DRC Basics

♦ Passing rules checking is vital for the
successful use of the DFT tools

♦ Rule violations are handled in four ways:
1. Error message:

– rules checking is terminated and tool remains in SETUP mode

2. Warning message:
– Indicates the number of violations

3. Note:
– Summary message that displays number of violations

4. Ignore:
– No message given

SETUP> SET DRc Handling

User-defined handling
 of displayed messages
Design-for-Test: Scan and ATPG Training2-26
December 2003

Full Scan DFT Flow
DRC Basics (Cont.)

Notes:

2-27 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

DRC Basics (Cont.)

♦ Each rule is assigned a rule and violation
identification number

Rule type:
Scannability Rule

Specific rule:
Ability to capture data
 with defined clocks

Occurrence:
3rd occurrence

 of violation

For example:
S2-3
Design-for-Test: Scan and ATPG Training 2-27
December 2003

Full Scan DFT Flow
Types of DRCs

Notes:

2-28 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Types of DRCs

♦ Procedure rules (P rules)
● Ensure test procedure file is syntactically and functionally

correct

♦ Data rules (D rules)
● Check the stability of the data in the scan chains

♦ Clock rules (C rules)
● Verify clock operation

♦ RAM rules (A rules)
● Check for testability conditions of embedded RAMs

♦ Extra rules (E rules)
● Check for potential problems-usually ignored by the tool

– Bus contention or data shifted through scan chains
Design-for-Test: Scan and ATPG Training2-28
December 2003

Full Scan DFT Flow
Scan Specific DRCs

Notes:

2-29 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Scan Specific DRCs

♦ General rules (G rules)
● Check for gross scan definition errors

♦ Trace rules (T rules)
● Use test procedure files to trace scan chains

♦ Scannability rules (S rules)
● Ensure that DFTAdvisor can safely

convert a sequential element into a scan element
● Check scannability during DRC

– S1 rule checking:
• Ensure when all clocks off- sequential

 elements are stable and inactive
– S2 rule checking

• Ensure that defined clocks capture data
when all other clocks are off

DFT> REPort DRc Rules

Displays all DRC rules
 or data for a specific violation
Design-for-Test: Scan and ATPG Training 2-29
December 2003

Full Scan DFT Flow
DFTInsight

Notes:

2-30 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

DFTInsight

♦ A DFT tool that provides an
interactive, graphical
debugging environment

♦ Displays a partial netlist
containing:

● Pertinent instances based on
the following:

– Paths
– Scan circuitry
– Circuitry involved in rules

violations

● Simulation and analysis data

Violation ID:

Gate ID

Instance
Pathname
Design-for-Test: Scan and ATPG Training2-30
December 2003

Full Scan DFT Flow
Troubleshooting DRC Violations:
Reporting S1 Fails

Notes:

2-31 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

♦ Problem: DFTAdvisor does not pass DRC
 SETUP> SET SYstem Mode Dft
// Flattening process completed, design_cells=51 library_primitives=64 sim_gates=282 PIs=9 POs=6.

// ---

// Begin circuit learning analyses.

// ---

// Equivalent gates=6 classes=3 CPU time=0.00 sec.

// Learning completed, implications=0, tied_gates=7, CPU time=0.00 sec.

// ---

// Begin scan chain identification process, memory elements = 7.

// ---

// ---

// Begin scannable cell rules checking for 7 nonscan memory elements.

// ---

// WARNING: There were 7 scannability rule S1 fails (unstable nonscan cells when clocks off).
// 7 non-scan memory elements identified as non-scannable.

// 0 non-scan memory elements identified as scannable.

// ---

// Begin scan clock rules checking.

// ---

// 0 scan clock/set/reset lines have been identified.

DFT> REPort DRC Rule S1
// WARNING: Unstable nonscan cell /u1/inst__565_ff_d_0__dff/DF1(270) when all clocks are off. (S1-1)

// WARNING: Unstable nonscan cell /u1/inst__565_ff_d_1__13/DF1(271) when all clocks are off. (S1-2)

// WARNING: Unstable nonscan cell /u1/inst__565_ff_d_2__13/DF1(272) when all clocks are off. (S1-3)

…

Troubleshooting DRC Violations: Reporting S1 Fails
Design-for-Test: Scan and ATPG Training 2-31
December 2003

Full Scan DFT Flow
Viewing the Problem: Analyzing S1
Violations

Notes:

2-32 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Viewing the Problem: Analyzing S1 Violations

♦ Use DFTInsight to analyze the S1 violations

Circuit is unstable
when clocks are off
Design-for-Test: Scan and ATPG Training2-32
December 2003

Full Scan DFT Flow
Troubleshooting DRC Violations: Adding
Clocks

Notes:

2-33 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

♦ Solution: ADD Clocks
SETUP> ANAlyze COntrol Signals -Auto_fix
// Begin control signals identification analysis.

// ---

// Identified 1 clock control primary inputs.

// /clk (9) with off-state = 0.

// Identified 0 set control primary inputs.

// Identified 1 reset control primary inputs.

// /rst (5) with off-state = 0.

// Identified 0 read control primary inputs.

// Identified 0 write control primary inputs.

// ---

// Total number of internal lines is 21 (7 clocks, 7 sets , 7 resets, 0 reads, 0 writes).

// Total number of controlled internal lines is 14 (7 clocks, 0 sets , 7 resets, 0 reads, 0 writes).

// Total number of uncontrolled internal lines is 7 (0 clocks, 7 sets , 0 resets, 0 reads, 0 writes).

// Total number of added primary input controls 2 (1 clocks, 0 sets , 1 resets, 0 reads, 0 writes).

SETUP> SET SYstem Mode Dft
// ---

// Begin scan chain identification process, memory elements = 7.

// ---

// Begin scannable cell rules checking for 7 nonscan memory elements.

// ---

// 7 non-scan memory elements identified as scannable.

// ---

// Begin scan clock rules checking.

// ---

// 2 scan clock/set/reset lines have been identified.

// All scan clocks successfully passed off-state check.

// All scan clocks successfully passed capture ability check.

Troubleshooting DRC Violations: Adding Clocks
Design-for-Test: Scan and ATPG Training 2-33
December 2003

Full Scan DFT Flow
Troubleshooting DRC Violations:
Reporting S2 Fails

Notes:

2-34 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

♦ Problem: DFTAdvisor does not pass DRC
// command: SET SYstem Mode dft

// Flattening process completed, design_cells=93 leaf_cells=93 library_primitives=121 sim_gates=224 PIs=27 POs=20.

// ---

// Begin circuit learning analyses.

// ---

// Equivalent gates=0 classes=0 CPU time=0.00 sec.

// Learning completed, implications=0, tied_gates=28, CPU time=0.00 sec.

// ---

// Begin scan chain identification process, memory elements = 17.

// ---

// ---

// Begin scannable cell rules checking for 17 nonscan memory elements.

// ---

// WARNING: There were 17 scannability rule S2 fails (clock capture ability check).

// 17 non-scan memory elements identified as non-scannable.

// 0 non-scan memory elements identified as scannable.

// ---

 SETUP> REPort DRC Rule S2

// WARNING: Clock capture ability check failed on /ix254(188). (S2-1)

Troubleshooting DRC Violations: Reporting S2 Fails
Design-for-Test: Scan and ATPG Training2-34
December 2003

Full Scan DFT Flow
Viewing the Problem: Analyzing S2
Violations

Notes:

2-35 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Viewing the Problem: Analyzing S2 Violations

♦ Use DFTInsight to analyze the S2 violations
Design-for-Test: Scan and ATPG Training 2-35
December 2003

Full Scan DFT Flow
Troubleshooting DRC S2 Violation

Notes:

2-36 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

♦ Solution: ADD Test Clock logic
...

// command: SET TEst Logic -Clock ON
// command: set system mode dft
// ---
// Begin scan chain identification process, memory elements = 17.
// ---
// ---
// Begin scannable cell rules checking for 17 nonscan memory elements.
// ---
// WARNING: There were 17 scannability rule S2 fails (clock capture ability check).
// 17 non-scan memory elements identified as non-scannable.
// 0 non-scan memory elements identified as scannable.

Troubleshooting DRC S2 Violation

...// Checking test clocks
// ---
// Number of test clocks required = 1
// command: run
// Number of targeted sequential instances = 17
// Performing scan identification …
// Total sequential instances identified = 17
// command: INSert TEst Logic
// WARNING: Flattened model has been freed
// command: REPort TEst Logic -instance
/uu1 mux21_macro
Number of mux21_macro inserted (instance based) = 1
New pins added in top module: counter16
/test_clk
/scan_in1
/scan_en
Number of new pins inserted = 3
Design-for-Test: Scan and ATPG Training2-36
December 2003

Full Scan DFT Flow
Viewing the Added TestClock Logic

Notes:

2-37 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Viewing the Added Test Clock Logic

♦ DFTAdvisor added test clock logic

Added test
clock logic
Design-for-Test: Scan and ATPG Training 2-37
December 2003

Full Scan DFT Flow
Scan Identification

Notes:

2-38 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Scan Identification

Enhanced
Procedure File

FastScan Dofile
Scan Inserted

Netlist

 Setup

Design Rule
Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT Library
Non-scan

Netlist

♦ Perform Scan Identification
DFT> RUN

♦ DFTAdvisor will do the
following:

● Identify which instances to
convert to scan

● Determine netlist changes
– Does not alter netlist

♦ TO display results:
DFT> REPort STatistics

● Sequential instances
● Non-scan and scan instances
● Instances scannable with test

logic

DFTAdvisor
Design-for-Test: Scan and ATPG Training2-38
December 2003

Full Scan DFT Flow
Scan/Test Logic Insertion

Notes:

2-39 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Scan/Test Logic Insertion

♦ Perform Scan/Test Logic Insertion
DFT> INSert TEst Logic -NUmber 4

● User-definable INSert Test Logic
arguments determine:

– Instance order in the scan chain (via a
file)

– Maximum length of scan chain
– Number of scan chains
– Clock domain handling within scan

chains

♦ DFTAdvisor creates a scan- inserted
netlistEnhanced

Procedure File
FastScan DofileScan Inserted

Netlist

 Setup

Design Rule
Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT Library
Non-scan

Netlist DFTAdvisor
Design-for-Test: Scan and ATPG Training 2-39
December 2003

Full Scan DFT Flow
Scan/Test Logic Insertion (Cont.)

Notes:

2-40 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Scan/Test Logic Insertion (Cont.)

♦ To display results:
DFT> REPort SCan Chains
DFT> REPort TEst Logic

DFT> INSert TEst Logic -NUmber 2

// WARNING: Flattened model has been freed

DFT> REPort SCan Chains

chain = chain1 group = dummy input = /scan_in1 output = /scan_out1 length = 4

 scan_enable = /scan_en clock = /clk

 reset = /rst

chain = chain2 group = dummy input = /scan_in2 output = /scan_out2 length = 3

 scan_enable = /scan_en clock = /clk

 reset = /rst

DFT> REPort TEst Logic

New pins added in top module: example_ckt

/scan_in1

/scan_out1

/scan_in2

/scan_out2

/scan_en

Number of new pins inserted = 5
Design-for-Test: Scan and ATPG Training2-40
December 2003

Administrator
Highlight

Administrator
Highlight

Full Scan DFT Flow
Write Results

Notes:

2-41 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Write Results

♦ Write a scan-inserted netlist
 DFT> WRIte NEtlist scan_design.v

♦ Write ATPG setup files for FastScan
 DFT> WRIte ATpg Setup scan_design

♦ Run DRC based on new setup files
 DFT> VERify SCan

Enhanced
Procedure File

FastScan Dofile
Scan Inserted

Netlist

 Setup

Design Rule
Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT Library
Non-scan

Netlist

scan_design.v scan_design.dofile scan_design.procfile

DFTAdvisor
Design-for-Test: Scan and ATPG Training 2-41
December 2003

Full Scan DFT Flow
 FastScan Dofile

Notes:

2-42 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

 FastScan Dofile

♦ Specifies circuit setup and scan
information for FastScan

● Defines the following:
– Clocks
– Scan operation
– Scan chains
– Pin constraintsEnhanced

Procedure File
FastScan Dofile

Scan Inserted
Netlist

 Setup

Design Rule
Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT Library
Non-scan

Netlist

// Generated by DFTAdvisor at Wed Jun 13 10:46:06 2001
//
add scan groups grp1 counter_syn_scan.testproc
add scan chains chain1 grp1 scan_in1 scan_out1
add clocks 0 clock4
add clocks 0 clock3
add clocks 0 clock2
add clocks 0 scan_reset
add clocks 0 clock1
add pin constraints test_en C1
~

DOFILE

DFTAdvisor
Design-for-Test: Scan and ATPG Training2-42
December 2003

Full Scan DFT Flow
Enhanced Procedure File

Notes:

2-43 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Enhanced Procedure File

♦ Describes the order of events for a
test pattern set

● Test_Setup (initialization)
– Sets non-scan state elements to a

constant state

● Load_Unload
– Defines how to load and unload scan

chains in a scan group

● Shift
– Defines how to shift data one position

down the scan chain

♦ Introduces timing to test vectors
● Test vectors are divided into cycles

Enhanced
Procedure File

FastScan Dofile
Scan Inserted

Netlist

 Setup

Design Rule
Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT Library
Non-scan

Netlist DFTAdvisor
Design-for-Test: Scan and ATPG Training 2-43
December 2003

Full Scan DFT Flow
Enhanced Procedure File (Cont.)

Notes:

2-44 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Enhanced Procedure File (Cont.)

timeplate tp0 =
 force_pi

 measure_po
 pulse CLOCK 20 10 ;

 period 40 ;
 end ;

procedure test_setup =
 timeplate tp0 ;

 cycle =
 force A 0 ;
 force B 1 ;

 force C 0 ;
end ;

 end;

procedure capture =
 timeplate tp0 ;
 cycle =
 force_pi ;
 measure_po ;
 pulse_capture_clock ;
 end ;
end ;

240

measure_sco
force_sci

measure_sco measure_po

Cycle time

Total time

CLOCK

3010 20
30 40

test_setup load_unload shift shift capture load_unload

40
1900 10 20 30 40 50 60 70 80 90 100 110 120 140 150 160 170

0
0 10 200 10 20 30

10 10 20 30 40 0
180130

40
20 30 40

0 10 20 30 40
0

200 210 220 230

force_sci force_pi

procedure load_unload =
 scan_group grp1 ;

 timeplate tp0 ;
 cycle =

 force scan_en 1 ;
 force CLOCK 0 ;

end ;
 apply shift 2 ;

procedure shift =
 scan_group grp1 ;

 timeplate tp0 ;
 cycle =

 force_sci ;
 measure_sco ;

 pulse CLOCK ;
end ;

end ;

end ;

0 ;
10 ;
Design-for-Test: Scan and ATPG Training2-44
December 2003

Full Scan DFT Flow
Invoking FastScan

Notes:

2-45 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Invoking FastScan

♦ The FastScan executable resides in the Mentor Graphics tree at:
● $MGC_HOME/bin/fastscan

♦ Invocation requirements:
● Scan-inserted netlist
● DFT library

Invocation:
shell> fastscan design.v -verilog \

 -lib dft.lib -log transcript.log -replace
Design-for-Test: Scan and ATPG Training 2-45
December 2003

Full Scan DFT Flow
FastScan Tool Flow an Overview

Notes:

2-46 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

FastScan Tool Flow an Overview

Patterns

 Setup

Configuration

Generate
 Patterns

Save Results

Design Rule
Checking

scan_design.dofiledesign.v scan_design.procfile dft.lib

ATPG setup files

Verification

DRC

Gate Level
Netlist

DFT Library

Setup Files

Test Patterns

Scan Inserted
Netlist

ATPG

Simulation
Library

DRC

DFTAdvisor

FastScan

SCAN
 INSERTION

Scan Inserted
Netlist

FastScan Dofile Enhanced
Procedure File

DFT Library
Design-for-Test: Scan and ATPG Training2-46
December 2003

Full Scan DFT Flow
FastScan Tool Flow

Notes:

2-47 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

ATPG> SAVe Patterns -Debug

FastScan Tool Flow

Patterns

 Setup

Configuration

Generate
 Patterns

Save Results

Design Rule
Checking

scan_design.dofile

Scan Inserted
Netlist

design.v scan_design.procfile

DFT Library

dft.lib

SETUP> DOFile scan_design.dofile

SETUP> SET SYstem Mode Atpg

// typically use defaults

ATPG setup files

ATPG> CREate PAtterns

Enhanced
Procedure File

FastScan Dofile
Design-for-Test: Scan and ATPG Training 2-47
December 2003

Full Scan DFT Flow
SETUP

Notes:

2-48 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

SETUP

DFT Library

Patterns

 Setup

Configuration

Generate
 Patterns

Save Results

Design Rule
Checking

scan_design.dofile

Scan Inserted
Netlist

design.v

Enhanced
Procedure File

FastScan Dofile

scan_design.procfile dft.lib

ATPG setup files

♦ Add setup information

SETUP> DOFile scan_design.dofile
//ADD PIn Constraints
// ADD Clocks

// ADD SCan Groups

// ADD SCan Chains

FastScan
Design-for-Test: Scan and ATPG Training2-48
December 2003

Full Scan DFT Flow
SETUP (Cont.)

Notes:

2-49 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

SETUP (Cont.)

♦ Setting up the circuit includes several tasks
● Constraining primary inputs

– Holds specified pins at a constant value during ATPG

● Adding clocks
– Adds scan or non-scan clock pins to the clock list

● Adding scan groups
– Adds a scan chain group

● Adding scan chains
– Adds a scan chain to a scan group
Design-for-Test: Scan and ATPG Training 2-49
December 2003

Full Scan DFT Flow
FastScan ATPG in a DC Scan Insertion
Flow

Notes:

2-50 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

FastScan ATPG in a DC Scan Insertion Flow

 Setup

Configuration

Generate
 Patterns

Save Results

Design Rule
Checking

Enhanced
Procedure FileFastScan DofileScan Inserted

Netlist

FastScan

Patterns

 Design Compiler
Scan insertion

?

SNPS STIL

stil2mgc
Design-for-Test: Scan and ATPG Training2-50
December 2003

Full Scan DFT Flow
 ATPG Setup Files

Notes:

2-51 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

♦ The following applies to ATPG setup files:
● They are used to enter ATPG setup information

>DOFile <name.dofiles>

● They can be created manually or interactively
● They can be created from STIL files

SHELL> stil2mgc -stil design.stp -tpf new_design.tpf -dofile
new_dofile.do

 ATPG Setup Files

//
// Generated by DFTAdvisor at Fri Jun 22 14:09:04 2001
//
add scan groups grp1 /scratch1/project_2/Pipe_test/1_pipe_arithoper_net_scan.v.testproc
add scan chains chain1 grp1 scan_in1 d_out[0]
add clocks 0 clk
~

// Generated by DFTAdvisor at Fri Jun 22 14:09:04 2001

set time scale 1.000000 ns ;
 timeplate gen_tp1 =
 force_pi 0 ;
 measure_po 10 ;
 pulse clk 20 10;
 period 40 ;
 end;

procedure shift =
 scan_group grp1 ;

 timeplate gen_tp1 ;
 cycle =

 force_sci ;
 measure_sco ;

 pulse clk ;
 end;

TEST PROCEDURE FILEDOFILE
Design-for-Test: Scan and ATPG Training 2-51
December 2003

Full Scan DFT Flow
DRC (FastScan)

Notes:

2-52 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

DRC (FastScan)

♦ Perform DRC
SETUP> SET SYstem Mode Atpg

♦ This command does the
following:

● Exits SETUP mode
● Performs DRC

DFT Library

Patterns

 Setup

Configuration

Generate
 Patterns

Save Results

Design Rule
Checking

scan_design.dofile

Scan Inserted
Netlist

design.v

Enhanced
Procedure File

FastScan Dofile

scan_design.procfile dft.lib

ATPG setup files

 FastScan
Design-for-Test: Scan and ATPG Training2-52
December 2003

Full Scan DFT Flow
 Configuration

Notes:

2-53 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

 Configuration

♦ Define configuration
 ATPG> SET FAult Type

 ATPG> ADD NOfaults
 ATPG> SET PAttern Type
 ATPG> ADD FAults

♦ Default settings are stuck-at
faults and combinational
(basic) patterns

scan_design.dofile scan_design.procfile dft.lib

DFT Library

Patterns

 Setup

Configuration

Generate
 Patterns

Save Results

Design Rule
Checking

Scan Inserted
Netlist

design.v

Enhanced
Procedure File

FastScan Dofile

ATPG setup files

 FastScan
Design-for-Test: Scan and ATPG Training 2-53
December 2003

Full Scan DFT Flow
Generate Patterns

Notes:

2-54 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Generate Patterns

DFT Library

Patterns

 Setup

Configuration

Generate
 Patterns

Save Results

Design Rule
Checking

scan_design.dofile

Scan Inserted
Netlist

design.v

Enhanced
Procedure File

FastScan Dofile

scan_design.procfile dft.lib

ATPG setup files

♦ Generate patterns
ATPG> CREate PAtterns

♦ View ATPG results
ATPG> REPort STatistics

FastScan
Design-for-Test: Scan and ATPG Training2-54
December 2003

Full Scan DFT Flow
Create Patterns

Notes:

2-55 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Create Patterns

♦ CREate PAtterns is the recommended command to create a
compressed high coverage pattern set

♦ Automatically performs the following operations:
● Deletes existing patterns
● Add Faults -All
● Performs a reset state
● Turns on ATPG compression, turns off random patterns, and

executes Set Decision Order -Random
● Performs ATPG
Design-for-Test: Scan and ATPG Training 2-55
December 2003

Full Scan DFT Flow
Save Results

Notes:

2-56 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

♦ Save patterns
ATPG> SAVe PAtterns <filename>

♦ Use the following (optional) command
to automatically verify patterns with
time-based simulation

 ATPG> SAVe PAtterns -Debug

Save Results

Patterns

 Setup

Configuration

Generate
 Patterns

Save Results

Design Rule
Checking

scan_design.dofiledesign.v scan_design.procfile dft.lib

ATPG setup files

Enhanced
Procedure File

DFT LibraryFastScan DofileScan Inserted
Netlist

FastScan
Design-for-Test: Scan and ATPG Training2-56
December 2003

Full Scan DFT Flow
Saving Test Patterns

Notes:

2-57 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Saving Test Patterns

♦ You can save patterns in many
ASIC vendor formats

● For example:
– WGL
– STIL
– TITDL

♦ You can save as Verilog or VHDL
test benches

♦ Recommended saving practices
● ASCII or binary

– used later in FastScan

● ASIC vendor format for tester
● Verilog or VHDL test bench

– used later for time-based
simulation/verification

#test_patterns 48
#simulated_patterns 416
CPU_time (secs) 0.4

// command: save patterns pat1_ser.v -procfile -serial -verilog -replace
// command: save patterns pat1_par.v -procfile -parallel -verilog -replace
// command: save patterns pat1_ascii -ascii -replace
// command: exit -d

Saving Patterns
...
Design-for-Test: Scan and ATPG Training 2-57
December 2003

Full Scan DFT Flow
Scan and ATPG Tool Flow

Notes:

2-58 • Design-for-Test: Scan and ATPG:
Full Scan DFT Flow

Copyright © 2003 Mentor Graphics Corporation

Scan and ATPG Tool Flow

Patterns

 Setup

Configuration

Generate
 Patterns

Save Results

Design Rule
Checking

Enhanced
Procedure FileFastScan Dofile

Scan Inserted
Netlist

 Setup

Design Rule
Checking

Scan
Identification

Scan/Test
 Logic Insertion

Scan/Test Logic
Configuration

Write Results

DFT Library

Non-scan
Netlist

SETUP> ADD PIn Constraints
SETUP> ANAlyze COntrol Signals -Auto_fix

// typically use defaults

SETUP> SET SYstem Mode Dft

DFT> RUN

DFT> INSert TEst Logic -NUmber 8

DFT> WRIte NEtlist <file_name> -Verilog
DFT> WRIte ATpg Setup <file_name>

SETUP> DOFile <file_name>.dofile

SETUP> SET System Mode atpg

ATPG> CREate Patterns

ATPG> SAVe PAtterns

DFTAdvisor

FastScan

Commands:

// typically use defaults
Design-for-Test: Scan and ATPG Training2-58
December 2003

Full Scan DFT Flow
Lab: Full Scan DFT Flow

Objectives

• Invoke DFTAdvisor to insert full scan in a design.

• Write a scan-inserted netlist file.

• Write ATPG setup files.

• Invoke FastScan to create, compress, and save patterns.

• Invoke DFTInsight to troubleshoot minor Design Rules Checking (DRC)
violations.

List of Exercises

• Exercise 3: Scan and ATPG Tool Flow

• Exercise 4: Scan and ATPG Tool Flow (With a Design Rule Violation)

Getting Started

1. Log in to your workstation if you are not already logged in.

2. Change to the $ATPGNW/lab2/exercise_3 directory.

shell> cd $ATPGNW/lab2/exercise_3

Exercise 3: Scan and ATPG Tool Flow

In this exercise, you invoke DFTAdvisor on a simple design to insert full scan.
You use DFTAdvisor to write a scan-based netlist file and ATPG setup files. Then
you invoke FastScan using the ATPG setup file information to create, compress,
and save patterns.
Design-for-Test: Scan and ATPG Training 2-59
December 2003

Full Scan DFT Flow
This lab gives you experience using the tools in a typical scan and ATPG tool
flow utilizing default configurations.

The Verilog design contains no errors, so you can use it as a future reference to
help you navigate through a scan and ATPG tool flow.

Understanding and applying these concepts assists you when you begin to make
customized configurations to enhance tool performance.

1. Invoke DFTAdvisor.

shell> dftadvisor

This invokes the DFTAdvisor Invocation Arguments dialogue box.You
must enter a design, a design format, and an ATPG library in order to
invoke the Graphical User Interface (GUI).

a. Enter the following in the appropriate dialogue boxes. Use the Browse
button to quickly find the design and design library, found in the
exercise_3 and libraries_1_to_4 directories.

Design: pipe_net_noscan.v

Design Format: Verilog

Library: libraries_1_to_4/adk.atpg

b. Click on the Invoke DFTAdvisor button. DFTAdvisor should now be
up and running with the Main and Control Panel Windows open.

DFTAdvisor and FastScan have various modes of operation called system
modes. Each system mode facilitates a specific task. The tool is now in
SETUP mode, which is the default system mode. In SETUP mode, you can
specify or set up circuit, scan, and tool behavior.

In this lab you use default configurations to minimize complexity in the tool
setup. The primary goal for this exercise is to familiarize you with both the
DFTAdvisor and FastScan tool flows.

2. Define control signals.
Design-for-Test: Scan and ATPG Training2-60
December 2003

Full Scan DFT Flow
a. In this exercise there are no requirements to hold pins at constant
values. However, setting pin constraints is something you often do
when setting up control signals.

What command do you use to hold a pin to a constant value?
__

b. Define clocks automatically via a dialogue box or via a command.

i. What command do you use to automatically define clocks?
__

ii. Where do you find the dialogue box to automatically add and
identify clocks? _____________________________________

What is the name of the dialogue box? ___________________

__

What button do you click on?__________________________

iii. Use one of the above methods to automatically add and identify
system clocks.

Default Scan configurations are used for this exercise, so we are finished
defining the design and are ready to go to the next stage, DFT mode, where
scan/test circuitry is identified and inserted.

3. Go to DFT mode.

You can go into DFT mode using the command line, or by selecting
Done With Setup in the Control Panel window.

Clicking on any button in the tool echoes the command to the session
transcript pane in the Main window.

i. What command do you use to go into DFT mode?
__
Design-for-Test: Scan and ATPG Training 2-61
December 2003

Full Scan DFT Flow
When you leave SETUP mode the tools automatically run DRC. You
should not encounter any problems in this run, however.

Figure 2-1. DFTAdvisor Control Panel

The Control Panel now looks like the one shown here. You work
through the process flow as indicated in the panel, starting with Setup
Identification.

a. Setup Identification: Select Full Scan if not already selected.

b. Run Identification: Identify the items that will be altered in this step.

What is the default scan type? ________________________________

Select Run with Existing Settings.
Design-for-Test: Scan and ATPG Training2-62
December 2003

Full Scan DFT Flow
i. The DFTAdvisor Identification Run Statistics window provides the
answers to the following questions.

How many sequential elements are in the design? ______________

How many scan cells have been identified? ___________________

What is the name of the top module for the design? (You need to
click on View Details to find out). __________________________

Select Close when you are finished with the Scan Identification
Settings window.

ii. Generate a report by clicking on the Report... button. When the
Results & Analysis window loads, click on the Generate Report
button. (Identification Results tab)

iii. Close and dismiss all windows until only the Main and Control Panel
windows remain open.

c. Setup/Run Test Synthesis: Perform the test synthesis using the
following (default) settings:

i. Setup Synthesize Scan Circuitry into Design:

a. Insert Scan Cells Based on: The Current Scan Identification List.

b. Insert 1 chain.

c. Allow Only One Enable Signal to control All Scan Chains.

Note

The View Details button displays the same information you saw
after clicking on the Run Identification box.

Note

DFTAdvisor has identified scannable instances to convert to scan
cells, but does not alter the netlist.
Design-for-Test: Scan and ATPG Training 2-63
December 2003

Full Scan DFT Flow
d. Click Done.

ii. Setup Synthesize Identified Test Points:

a. Control Points: There should be no Scan Cells created at the
Control Point.

b. Observe Points: Do Not Add a Scan Cell should be selected.

c. Click Done.

iii. Setup Test Logic to Control RAMs.

a. This is the default setting. You do not need to alter it.

DFTAdvisor can automatically insert a number of different test structures
into the design. These structures include: scan circuitry, test points, test
logic to RAMs, I/O buffers for added test pins, and buffer trees for test pins.

iv. Click OK. The Use Existing Settings or Customize? box opens.

v. Click Run with Existing Settings. You just inserted full scan into
the design using the default settings.

d. Results and Analysis: Clicking on this selection allows you to review
and report on the results. (This brings up the same window you saw in
step 3.b.ii above.) You may generate a report. When you are done, close
the window.

4. Click on the Save Results... button in the Button pane to save a Verilog
netlist and ATPG setup files.

a. Use the dialogue to save the netlist and the setup files for FastScan.

Note A scan-inserted netlist has now been created.
Design-for-Test: Scan and ATPG Training2-64
December 2003

Full Scan DFT Flow
i. Click the Browse button and save a new netlist in Verilog format
called pipe_scan.v to the ../results directory.

ii. Save an enhanced procedure ATPG Setup file with a basename of
../results/pipe_scan (no file extension).

iii. Select the Overwrite Existing File button for both the netlist and
ATPG Setup files procedure.

iv. Select to view the files after generation.

v. Finish by clicking OK.

DFTAdvisor has written the following three files:

• pipe_scan.v, which is the Verilog netlist

• pipe_scan.dofile, which is a dofile

• pipe_scan.testproc, which is an Enhanced Procedure file

The File Viewer is now open.

vi. Select the pipe_scan.dofile if it is not already displayed in the File
Viewer. This file inputs circuit setup and scan information needed by
FastScan at invocation.

vii. Click pipe_scan.testproc in the Select File to View display panel.
This displays the shift and load_unload procedures, as well as the
timing plate (gen_tp1), which is shared by both procedures.

b. Close the Viewer.

5. Exit DFTAdvisor. (Click on the Exit... button in the Button pane.)

Next, you use FastScan to create, compress, and save patterns following the
FastScan tool flow as seen in the lectures and shown in Figure 2-2.
Design-for-Test: Scan and ATPG Training 2-65
December 2003

Full Scan DFT Flow
Figure 2-2. FastScan Tool Flow.

6. Run FastScan.

a. For this exercise, invoke FastScan from the shell prompt.

shell> fastscan

b. Enter the following in the appropriate dialogue boxes. Use the Browse
button to quickly find the design and design library, found in the
exercise_3/results and ../libraries directories.

Design: pipe_scan.v

Design Format: Verilog
Design-for-Test: Scan and ATPG Training2-66
December 2003

Full Scan DFT Flow
Library: libraries_1_to_4/adk.atpg

c. Click on the Invoke FastScan button.

FastScan is now up and running. You have successfully invoked
FastScan on the pipe_scan.v design. Both the Main and Control Panel
windows are open.The Circuit Setup graphic pane opens, and Setup is
highlighted in the Process Pane.

d. Load the dofile pipe_scan.dofile. (File menu)

i. What command would you use to load the dofile at the SETUP>
prompt?

ii. The dofile contains a command that loads the enhanced procedure
file. Write that command here:

iii. What other commands have been completed?

For additional information on procedure files, refer to Chapter 9 of the
Design-for-Test Common Resources Manual.

Let us review what FastScan performed in this step:

• Compiled the library

• Read in the Verilog Netlist (pipe_scan.v)

• Read in the test procedure file (pipe_scan.testproc)

• Read in the dofile (pipe_scan.dofile)
Design-for-Test: Scan and ATPG Training 2-67
December 2003

Full Scan DFT Flow
 All of this is displayed in the session transcript area, as previously
discussed.

All the setup necessary for this design has been completed automatically.

7. Go to ATPG mode.

a. Click the Done with Setup button in the Circuit Setup graphic pane.

The FastScan — Session Purpose dialogue box opens.

b. Click the Pattern Generation button. The Test Pattern Generation
dialogue box opens. Also, Pattern Generation is highlighted in the
Process pane.

c. Looking at the Session Transcript window, identify the processes that
occurred when you clicked on this button.

d. The tool exited SETUP mode and entered the ATPG mode. What does
the prompt at the command line indicate now?

Working with the Process diagram shown in the Control Panel window,
work through the Pattern Generation Process.

e. Fault Universe: Select Typical settings. Look at the Session Transcript
window. What commands does this process generate?

f. Test Generation: Generate patterns by selecting the Run with Existing
Settings button.
Design-for-Test: Scan and ATPG Training2-68
December 2003

Full Scan DFT Flow
Fill in the first line of the following tables using the results.

g. Statically compress patterns (Click on the Compress... button in the
FastScan Pattern Compression Statistic dialogue box.). Use three
compression passes. Click Compress again.

Fill in the second line in the table above. (Note: Not all columns apply).

Compression Results: How many patterns have been removed?

During static compression, faults are simulated first in reverse order,
and then in random order. This reduces the pattern set because only
those patterns that detect new faults are retained.

Table 2-1. Test Pattern Generation Results

Run
No. of
Effective
Patterns

No. of
Sim’d
Patterns

No. of
detected

No. of
Aborted

No. of
AU

No.
Redun.

Table 2-2. Test Pattern Generation Results (Cont.)

Run
No.
Undetect

Test
Coverage
%

Fault
Coverage
%

ATPG
Effect
%

CPU
Runtime
Design-for-Test: Scan and ATPG Training 2-69
December 2003

Full Scan DFT Flow
h. Dynamically compress patterns. We do not compress the present set,
but throw them away and start again, running compression as we
generate patterns. Dynamic compression occurs during an ATPG run.

 ATPG > create patterns

i. Fill in the third line in the table above. (Note: Not all columns
apply).

How many faults were detected? ____________________________

ii. Click Dismiss to exit the FastScan Pattern Compression Statistics
dialogue window.

So far, you have created a test pattern set and you have compressed the set
both statically and dynamically.

The next process in the ATPG tool flow is to save the patterns.

8. Save Patterns: Click on the Save Patterns... button in the Button pane.
Save parallel Verilog patterns. When the dialogue opens save the pattern set
to a file with the following:

• File name: lab2/exercise_3/results/pat1_par.v (overwrite the file if it
already exists).

• Select Verilog Pattern Format for Parallel patterns.

• Save Chain and Scan tests.

Parallel Verilog test benches are used in time-based simulations to verify
FastScan’s expected values against simulated values (simulation
mismatch).

9. Save serial Verilog patterns.

• File name: lab2/exercise_3/results/pat1_ser.v (overwrite the file if it
already exists).

• Select Verilog Pattern Format for Serial patterns.
Design-for-Test: Scan and ATPG Training2-70
December 2003

Full Scan DFT Flow
• Save Chain and Scan tests for the first 5 patterns. (Select Number of
Patterns to Sample per Pattern Type. Make sure there is nothing in the
Pattern Range to Save: beginning and ending boxes or you will generate
an error.)

10. Exit FastScan.

Exercise 4: Scan and ATPG Tool Flow
 (With a Design Rule Violation)

This exercise is similar to Exercise 3 in that you invoke DFTAdvisor on a simple
design to insert full scan. A bug has been incorporated into the design that causes
a minor DRC violation. You use DFTInsight to view the problem, and you correct
the problem so DFTAdvisor will successfully pass DRC and enter the DFT
system mode. You use DFTAdvisor to write a scan-based netlist file and ATPG
setup files.

Then you invoke FastScan using the ATPG setup file information to create,
compress, and save patterns.

This lab gives you experience using the tools in a typical scan and ATPG tool
flow utilizing default configurations, with the added step of correcting a minor
DRC violation.

1. Change to the $ATPGNW/lab2/exercise_4 directory.

shell> cd $ATPGNW/lab2/exercise_4

2. Invoke DFTAdvisor.

shell> dftadvisor

a. Enter the following in the appropriate dialogue boxes. Use the Browse
button to quickly find the design and design library, found in the
exercise_4 and libraries_1_to_4 directories.

Design: pipe_noscan.v

Design Format: Verilog
Design-for-Test: Scan and ATPG Training 2-71
December 2003

Full Scan DFT Flow
Library: libraries_1_to_4/adk.atpg

Log file: results/dftadvisor.log

(Overwrite the existing log file)

b. DFTAdvisor should be up and running with the Main and Control Panel
windows both open.

3. Define the control signals as you did in section 2 of exercise 3.

4. Go to DFT mode.

You do this by typing a command, or by selecting Done with Setup in the
Control Panel pane.

5. Debug Errors/Warnings: The DRC Warnings Occurred window opened.
Proceed with the debugging process. This opens the DRC Graphic Pane.

a. Look at the Session Transcript pane to find the warning message.

What type of DRC violation do you have?

__

What causes these? (Select Go to Manual for help.)
__

__

b. Investigate them using DFTAdvisor:

i. Click the Select button in the DRC graphic pane of the Control Panel
window to open a dialogue box.

ii. By clicking on the two ID numbers and View Info, find out specific
information about the violations:

iii. What instance is affected by S-1? ___________________________
Design-for-Test: Scan and ATPG Training2-72
December 2003

Full Scan DFT Flow
iv. What instance is affected by S-2? ___________________________

The information is found in the Graphics pane. Dismiss the Select
Violation ID window once you have obtained the information.

c. Investigate further using DFTInsight, opening an interactive graphical
debugging environment:

i. Click on the Open DFTInsight button in the Button pane.

ii. Select Analyze > DRC Violations and investigate S1-1.

To what is the CLK input of the instance you identified above
connected? ___

Why does this cause a problem in test?

iii. Select S1-2 in the Select a Violation ID dialogue to investigate the
other violation.

To what is the CLK input of this instance connected?

Click on the EZ-trace button and the LMB to back trace the X on this
instance two levels. What is the name of the instance you traced to?

Being able to trace backward and forward can be an invaluable aid in
debugging.

iv. When you have finished, close DFTInsight.

6. We need to go back to setup mode to make corrections. Select Done with
DRC Debugging in the Graphic pane to go back to SETUP mode. Do not
use the tool process flow buttons.

The problem is fixed by enabling test logic insertion for clocks. Doing this
does not alter the netlist that DRC checks, but enables the environment to
deal with these errors.
Design-for-Test: Scan and ATPG Training 2-73
December 2003

Full Scan DFT Flow
7. Open the Setup for Test Synthesis dialogue box (Test Synthesis Setup...
button) and select the Test Logic/Latch Scannability tab to turn on test logic
insertion for clocks. (Enable Insertion of Test Logic for the Following
Types of Uncontrollable Signals: Clocks)

What command does this generate?
__

8. Go to DFT mode.

You can issue a command on the command line, or select Done with Setup
in the Control Panel pane.

The DRC warnings still appear, but you have dealt with them so there is no
need to investigate further. Go to the next phase.

Observe the session transcript. How many sequential instances can be gated
to be scannable? __

Work through the process flow as you did in exercise 3, starting with Setup
Identification.

a. Setup Identification: Full Scan (default)

b. Run Identifications: Identify the items to be altered in this step. Select
Run with Existing Settings and then dismiss the DFTAdvisor
Identification Run Statistics box.

c. Setup/Run Test Synthesis: Use the following default settings:

i. Synthesize Scan Circuitry into the Design

ii. Synthesize Identified Test Points

iii. Synthesize Test Logic Circuitry

You get one more chance to alter things, but you don’t need to; just
run with existing settings.

9. Save a Verilog netlist and ATPG setup files.
Design-for-Test: Scan and ATPG Training2-74
December 2003

Full Scan DFT Flow
a. Click the Save Results... button in the button pane to bring up the Save
Results dialogue box. Use the dialogue to save the netlist and the setup
files for FastScan.

i. Save a new netlist in Verilog format to the file results/pipe_scan.v.

ii. Save an enhanced procedure ATPG Setup file with the basename of
results/pipe_scan. (no file extension)

iii. Overwrite any files of the same names that may already be present
for either the netlist or ATPG Setup files.

Finish by clicking OK.

You have written the following three files:

• pipe_scan.v, which is the Verilog netlist

• pipe_scan.dofile, which is a dofile file

• pipe_scan.testproc, which is an Enhanced Procedure file

You now have created a scan inserted netlist. The next stage is to generate
the test patterns to use with the netlist.

In this part of the exercise you invoke FastScan. The goal is to follow a
typical ATPG flow.

10. Click the Done with Test synthesis button in the Graphic pane.

i. Click Exit... in the DFTAdvisor — Test Synthesis Complete
dialogue box. Confirm Exit when you are asked.

From the shell prompt, invoke Fastscan:

shell> fastscan

a. Enter the following in the appropriate dialogue boxes. Use the Browse
button to quickly find the design and design library, found in the
exercise_4/results and libraries_1_to_4 directories.
Design-for-Test: Scan and ATPG Training 2-75
December 2003

Full Scan DFT Flow
Design: pipe_scan.v

Design Format: Verilog

Library: libraries_1_to_4/adk.atpg

Command File: pipe_scan.dofile

This time we load the dofile from the invocation window.

i. Click on the Invoke FastScan button.

FastScan is now up and running. You have successfully invoked
FastScan on the pipe_scan.v design. Both the Command Line and
the Control Panel windows are open. The Circuit Setup graphic
pane opens. Also, Setup is highlighted in the Process Pane.
Design-for-Test: Scan and ATPG Training2-76
December 2003

Full Scan DFT Flow
All the setup for this design has been completed automatically. Note
the addition of an extra command in the dofile, due to the fact that
extra test logic was added in the form of a pin constraint.

What is the new
command?__

11. Go to ATPG mode.

a. Click the Done with Setup button in the Circuit Setup graphic pane.

The FastScan — Session Purpose dialogue box opens.

b. Click the Pattern Generation button. The Test Pattern Generation
graphic pane opens. Also, Pattern Generation is highlighted in the
Process pane.

Working with the Process diagram shown in the Control Panel window,
work through the Pattern Generation Process.

c. Fault Universe: Select Typical settings.

d. Test Generation: Generate patterns by selecting the Run with Existing
Settings button.

Fill in the first line of the following tables using the results.

Table 2-3. Test Pattern Generation Results

Run
No. of
Effective
Patterns

No. of
Sim’d
Patterns

No. of
detected

No. of
Aborted

No. of
AU

No.
Redun.
Design-for-Test: Scan and ATPG Training 2-77
December 2003

Full Scan DFT Flow
Table 2-4. Test Pattern Generation Results (Cont.)

e. Statistically compress the existing patterns, using 3 compression passes.
(Compression.. button in the Button pane)

Fill in the second line in the table above.

Compression Results: How many patterns have been removed?

During static compression faults are simulated first in reverse order,
then in random order. This reduces the pattern set because only those
patterns that detect new faults are retained.

f. Dynamically compress patterns. We do not compress the present set,
but throw them away and start again, running compression as we
generate patterns. FastScan typically ends with a 1 pass static
compression on the generated set. However, this pattern set is small and
FastScan does not do perform static compression on this set.

Remember, dynamic compression occurs during an ATPG run.

ATPG > create patterns

Fill in the third line in the table above. (Note: Not all columns apply).

i. Look at the session transcript window for information regarding
information for the dynamic compression method.

Table 2-5.

Run
No.
Undetect

Test
Coverage
%

Fault
Coverage
%

ATPG
Effect
%

CPU
Runtime
Design-for-Test: Scan and ATPG Training2-78
December 2003

Full Scan DFT Flow
How many faults were detected? ____________________________

Click Dismiss to exit the FastScan Pattern Compression Statistics
dialogue window.

So far, you have created a test pattern set and have compressed the set
both statically and dynamically.

ii. The next step in the process is to save the ATPG patterns.

12. Save parallel Verilog patterns. Click on the Save Patterns... button in the
Button pane. When the dialogue opens save the pattern set to a file with the
following:

• File name: lab2/exercise_4/results/pat1_par.v (Overwrite the file if it
already exists.)

• Select Verilog Pattern Format for Parallel patterns.

• Save Chain and Scan tests.

13. Save serial Verilog patterns:

• File name: lab2/exercise_4/results/pat1_ser.v (Overwrite the file if it
already exists.)

• Select Verilog Pattern Format for Serial patterns.

• Save Chain and Scan tests for the first 5 patterns. (Select Number of
Patterns to Sample per Pattern Type)

i. Exit FastScan.

Congratulations. You have used the DFT tools in a typical scan and ATPG
tool flow.
Design-for-Test: Scan and ATPG Training 2-79
December 2003

Full Scan DFT Flow
Test Your Knowledge

1. What can you specify in SETUP mode?

__

2. What are pin constraints?

__

3. What command automatically identifies clocks and control signals?

__

4. True or False. When scannable instances are identified, the netlist is altered.

__

5. What do you do if you see the message “Flattened model has been freed” in
the session transcript area?

__

6. True or False. The DFT tools will not successfully exit the SETUP mode
when a DRC violation occurs.

__

7. What is the recommended command to create a compressed high coverage
pattern set.

__

8. Why should you use log files?

__

9. What is an Enhanced Procedure file?

__
Design-for-Test: Scan and ATPG Training2-80
December 2003

Full Scan DFT Flow
10. Why create serial test patterns?

__
Design-for-Test: Scan and ATPG Training 2-81
December 2003

Full Scan DFT Flow
Lab Summary

Now that you have completed the Full Scan DFT flow lab, you should know how
to do the following:

• Invoke DFTAdvisor to insert full scan into a design following a typical scan
tool flow process

• Write a scan-inserted netlist

• Write ATPG setup files

• Invoke FastScan to create, compress, and save patterns following a typical
ATPG tool flow process

• Invoke DFTInsight to troubleshoot minor DRC violations

Design-for-Test: Scan and ATPG Training2-82
December 2003

Module 3
Configuring Scan Chains/Test

Logic and Full Scan Flow

Objectives

Upon completion of this module, you will be able to:

• Setup scan pins new and existing (internal or external).

• Insert test logic.

• Create, configure and balance scan chains.

• Insert scan cells without stitch and write out a scan chain order file.

• Edit a scan chain order file and change the order of the scan cells.

• Stitch the scan chain with the modified order file.
Design-for-Test: Scan and ATPG Training 3-1
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Module Topics

Notes:

3-2 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Module Topics

♦ This module addresses the following topics:
● Scan methodology
● Test logic
● Defining pins
● Multiple clocks
● Stitching
● Order files

Enhanced
Procedure FileFastScan DofileScan Inserted

Netlist

 Setup

Design Rule
 Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT Library
Non-scan

Netlist

design.v dft.lib

DFTAdvisor
Design-for-Test: Scan and ATPG Training3-2
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Scan Methodology: Scan Cells

Notes:

3-3 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Scan Methodology: Scan Cells

♦ Specify Mux scan as scan cell type.
 SETUP> SET SCan Type Mux scan // default

Enhanced
Procedure FileFastScan Dofile

Scan Inserted
Netlist

Setup

Design Rule
 Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT LibraryNon-scan
Netlist

design.v dft.lib

DFTAdvisor
Design-for-Test: Scan and ATPG Training 3-3
December 2003

Administrator
Highlight

Configuring Scan Chains/Test Logic and Full Scan Flow
Scan Methodology: Full Scan

Notes:

3-4 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Scan Methodology: Full Scan

Enhanced
Procedure FileFastScan Dofile

Scan Inserted
Netlist

Setup

Design Rule
 Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT LibraryNon-scan
Netlist

design.v dft.lib

DFTAdvisor

♦ Specify Full scan for scan identification.
 > SETup SCan Identification Full scan //default
Design-for-Test: Scan and ATPG Training3-4
December 2003

Administrator
Highlight

Configuring Scan Chains/Test Logic and Full Scan Flow
Scan Methodology: Full Scan Versus
Partial Scan

Notes:

3-5 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Scan Methodology: Full Scan Versus Partial Scan

♦ Full scan
● Converts all memory elements to scan

– Sometimes a few non-scan restrictions

● Proven methodology
– Most common

● Provides high test coverage/high quality
● Uses a combinational ATPG tool which requires minimal test

generation effort

♦ Partial scan
● Converts a portion of memory elements to scan

– Not a commonly used methodology

● Increases test coverage time but requires less silicon area
● Uses a sequential ATPG tool which requires maximum test

generation effort
Design-for-Test: Scan and ATPG Training 3-5
December 2003

Administrator
Highlight

Administrator
Highlight

Configuring Scan Chains/Test Logic and Full Scan Flow
Scan Methodology: DFT library and Scan
Identification

Notes:

3-6 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Scan Methodology: DFT Library and Scan Identification

♦ The DFT library:
● A model description defines a

single cell in the technology library.
● A cell description (model or macro)

describes a component in a
specified design.

● A library is simply a set of models.

Enhanced
Procedure FileFastScan DofileScan Inserted

Netlist

Setup

Design Rule
 Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT LibraryNon-scan
Netlist

design.v dft.lib

DFTAdvisor

 // ==================================
 // Model: DFF
 // ==================================

model DFF (PRE, CLR, CLK, D, Q, QB) (
input (PRE, CLR, D) ()
input (CLK) (clock = rise_edge;)
output(Q, QB) (primitive = _dff (PRE, CLR, CLK, D, Q, QB) ;
)

Design-for-Test: Scan and ATPG Training3-6
December 2003

Administrator
Highlight

Configuring Scan Chains/Test Logic and Full Scan Flow
Scan Methodology: DFT library and Scan
Identification (Cont.)

Notes:

3-7 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Scan Methodology: DFT library and Scan Identification
(Cont.)

♦ If a library model is a scan cell, the model description
contains a scan definition attribute:

● Provides information for mapping non-scan sequential models
(dffs and latches) to their associated scan cell models.

Replaced with:
Mux_Scan_Cell

Original
Flip-FlopPRE

QBCLK

D Q

CLR

PRE

CLR

SC_IN

CLK

D

SC_EN
QD

DFF
QB

N_2

MUX 1

DFF 1

//==
Model: DFF

//===

model DFF (PRE,CLR,CLK,D, Q, QB) (
input (PRE, CLR, D) ()

 input(CLK) (clock = rise_edge;)
 output(Q QB) (primitive = _dff(PRE,CLR,CLK,D,QB);

)
//===

Model: MUX_SCAN _CELL
//==

 model MUX_SCAN_CELL (PRE, CLR, SC_IN, SC_EN, CLK, D, Q, QB) (
 scan_definition (
 type = mux_scan
 scan_in = SC_IN;

 scan_enable = SC_EN;
 scan_out = Q, QB;

 non_scan_model = DFF (PRE, CLR, CLK, D, Q, QB);
)

 input (PRE, CLR, SC_IN, SC_EN, CLK ()
 intern(N_2) (primitive = _mux mux1 (D, SC_IN, SC_EN,N_2);)
 output(Q, QB) (primitive = _dff dff1(PRE, CLR, CLK, N_2, Q, QB);)

)
//==
Design-for-Test: Scan and ATPG Training 3-7
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Test Logic

Notes:

3-8 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Test Logic

♦ Why do we add test logic?
● Some designs contain uncontrollable clock circuitry.
● Sequential devices must be controllable to be converted to scan.
● RAM and three-state logic must be controllable to be testable.

Uncontrollable Clock

AfterBefore

Added Test Logic

D Q D Q

CK CK

R
Sc_in

Sc_en

R
Sc_in

Sc_en

CL

Test_en

D Q D Q

CK CK

R
Sc_in

Sc_en

R
Sc_in

Sc_en

CL

CL= combinational
 logic
Design-for-Test: Scan and ATPG Training3-8
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Test Logic (Cont.)

Notes:

3-9 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

 // =========================
 // Model: AN2
 // =========================

 model AN2 (A, B, Z) (
 cell_type = AND;
 input (A, B) ()

 output (Z) (function = A * B;)

)

Test Logic (Cont.)

♦ To add test logic circuitry, DFTAdvisor uses a number of
combinational gates from the ATPG library for example:

● AND MUX Latch
● OR INV

♦ A cell_type attribute defines valid test logic
Design-for-Test: Scan and ATPG Training 3-9
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Test Logic (Cont.)

Notes:

3-10 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Test Logic (Cont.)

♦ Define library models used for test
logic:

 SETUP> ADD CEll Models dftlib_model
● Or automatically defined by DFT library

if the model has a cell_type attribute

♦ Generate scannability check results for
non-scan instances:

 DFT> REPort DFT Check

SETUP> ANAlyze COntrol Signals -Autofix

SETUP> SET TEst Logic -set on

SETUP> SET SYstem Mode dft

DFT> REPort DFT Check

Enhanced
Procedure FileFastScan Dofile

Scan Inserted
Netlist

Setup

Design Rule
 Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT Library

design.v dft.lib

DFTAdvisor

 Helpful Tip
 Lists DFTAdvisor-identified pins
 that require test logic

Non-scan
Netlist
Design-for-Test: Scan and ATPG Training3-10
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Test Logic: Defining Library Models

Notes:

3-11 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Test Logic: Defining Library Models

♦ Define library models when
inserting test logic for the following
situations:

● Set/reset clock access
● Lockup latch between clock

domains
● RAM control
● Three-state bus control
● Control points
● Observe points

♦ Display added test logic during
scan insertion:

 DFT> REPort TEst Logic

// command: INSert TEst Logic
// Warning: Flattened model has been freed
// command: write atpg setup pipe_setup -procfile -rep
// command: write netlist pipe_netlist.v -verilog -replace
// Writing VERILOG netlist ...
// command: REPort TEst Logic
New pins added in top module: pipe
/scan_in1
/scan_en
Number of new pins inserted = 2

Inserted test logic
Design-for-Test: Scan and ATPG Training 3-11
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
 Pins

Notes:

3-12 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

 Pins

● Fault sites include only:
– Top-level module pins
– Library model pins
– Netlist primitive pins

● Pins are identified by unique pin names:
– /I116/q

● Three types of pins:
– Inputs (top-level, primary input)
– Output (top-level, primary output)
– Bidi
Design-for-Test: Scan and ATPG Training3-12
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Defining Pins

Notes:

3-13 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Defining Pins

♦ Assign scan input and scan output pin
connections:

 SETUP> ADD SCan Pins Chain1 /U1/O \
 /U2/I

♦ Assign scan control pin connections:
 SETUP> SETup SCan Insertion \

 -SEN My_scan_en -TEN test_en

Enhanced
Procedure File

FastScan Dofile
Scan Inserted

Netlist

Setup

Design Rule
 Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT Library
Non-scan

Netlist

design.v dft.lib

DFTAdvisor
Design-for-Test: Scan and ATPG Training 3-13
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Defining Pins (Cont.)

Notes:

3-14 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Defining Pins (Cont.)

test_enable

Before scan

top

PadPad
Si_1 So_1

U1

I O I

U2

O

SETUP> ADD SCan Pins /U1/O /U2/I
SETUP> SETup SCan Insertion -SEN My_scan_en -TEN test_enable

D Q D Q D Q

A
B

CLK

SO

Y

X

Connect to scan in
Design-for-Test: Scan and ATPG Training3-14
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Defining Pins (Cont.)

Notes:

3-15 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Defining Pins (Cont.)

test_enable

Si_1 So_1

My_scan_en

CLK

DFT> INSert TEst Logic

top

After scan

A
B

SO

Y

X

I O

U1 U2

D Q D Q D Q

I O

Pad

Pad

Pad

Pad

Added test logic
Design-for-Test: Scan and ATPG Training 3-15
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Clocks

Notes:

3-16 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Clocks

♦ The following applies to clocks:
● Most designs have multiple clocks.
● Clocks have a defined “off-state”
● Clocks have two types of behavior:

– Shift clocks shift data through the scan chain.
– Capture clocks capture data into scan cells.
Design-for-Test: Scan and ATPG Training3-16
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Multiple Clock Issues

Notes:

3-17 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Multiple Clock Issues

♦ Designs with multiple clock domains can produce clock
skew during test.

♦ Different clock inputs and clock edges can
cause the following skew problems:

● Shifting data through scan chains.
● Capturing data into scan chains.

Clock
Generator

Design
Block

A

Design
Block

B

Clk1

Clk2

Clk3

Clk4
Design-for-Test: Scan and ATPG Training 3-17
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Multiple Clock Issues (Cont.)

Notes:

3-18 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Multiple Clock Issues (Cont.)

♦ During shift, all shift clocks are pulsed at the same
frequency and time.

● Clock skew results because of different clock domains.

♦ During capture, one or more clocks might be pulsed
at the same time.

● Clock skew results because of possible sequencing
limitations of ATPG.
Design-for-Test: Scan and ATPG Training3-18
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Multiple Clocks: Minimizing Clock Skew

Notes:

3-19 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Multiple Clocks: Minimizing Clock Skew

♦ Minimize clock skew during shift:
● Order scan chains

– Group flip-flops together into one clock domain.
– Insert lockup latches where domains cross.

D

SI

Q

A

D

SI

Q

B

D

SI

Q

C

D

SI

Q

D

D

EN

Q

LL1

Combinational Logic

Clk1

Clk2

SI

SO
D

SI

Q

A

D

SI

QD

SI

Q

A

D

SI

Q

B

D

SI

QD

SI

Q

B

D

SI

Q

C

D

SI

QD

SI

Q

C

D

SI

Q

D

D

SI

QD

SI

Q

D

D

EN

Q

LL1
D

EN

Q

LL1

Combinational Logic

Clk1

Clk2

SI

Multiple Clocks
Inserted

 Lockup Latch
Design-for-Test: Scan and ATPG Training 3-19
December 2003

Administrator
Highlight

Administrator
Highlight

Configuring Scan Chains/Test Logic and Full Scan Flow
Multiple Clocks: Minimizing Clock Skew
(Cont.)

Notes:

3-20 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Multiple Clocks: Minimizing Clock Skew (Cont.)

♦ Minimize clock skew during capture:
● Control clock handling

– Pulse one clock per pattern

 – Pulsing one clock per pattern

TClk1

TClk3

Start
load_unload

shift shift capture load shift

TClk2

TClk4

shift capture

Pattern 1 Pattern 2

unload
Design-for-Test: Scan and ATPG Training3-20
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Multiple Clocks: Minimizing Clock Skew
(Cont.)

Notes:

3-21 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Multiple Clocks: Minimizing Clock Skew (Cont.)

♦ Optimize clock handling during ATPG:
 SETUP> SET Clock Restriction Domain_clock

 SETUP> REPort Clock Domains
 // clock Name : Clock_domain

 //-----------------------------

 // /tck1 (8) : 1

 // /tck3 (9) : 1

 . . .

In FastScan

Scan Enable

TClk1

TClk3

load shift shift capture shift

TClk2

TClk4

shift capture

Pattern 1 Pattern 2

Start
load_unload

Start

unload
Design-for-Test: Scan and ATPG Training 3-21
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Multiple Clocks

Notes:

3-22 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Multiple Clocks

♦ By default all clock primary
inputs and edges are placed
in separate scan chains.

Scan In 1

Scan In 2

Scan In 3

CLK 1

CLK 2

Scan Out 1

Scan Out 2

Scan Out 3

DFT> INSert Test Logic

design.v dft.lib

Enhanced
Procedure File

FastScan Dofile
Scan Inserted

Netlist

Setup

Design Rule
 Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT Library
Non-scan

Netlist
DFTAdvisor
Design-for-Test: Scan and ATPG Training3-22
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Multiple Clocks: Merging Clock Edges

Notes:

3-23 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Multiple Clocks: Merging Clock Edges

♦ Leading and trailing edge clocks can be combined into the
same scan chain.

♦ DFTAdvisor groups all trailing edge clock scan cells first.

DFT> INSert TEst Logic -Edge Merge

Scan In 1

Scan In 2

CLK 1

CLK 2

Scan Out 1

Scan Out 2
Design-for-Test: Scan and ATPG Training 3-23
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Multiple Clocks: Merging Different
Clocks

Notes:

3-24 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Multiple Clocks: Merging Different Clocks

♦ Different clocks can be merged into the same chain.
● DFTAdvisor selects scan cells to be merged.
● DFTAdvisor places lockup latches between each clock

domain.
DFT> SET LOckup Latch on

DFT> INSert TEst Logic -clock merge

♦ Multiple clocks can be combined into ‘clock
groups’.

● Explicitly defines which clocks can be placed into the
same scan chain.

DFT> ADD CLocks 0 clk1 clk2 clk3

DFT> ADD CLock Groups group1 clk1 clk2 clk3

DFT> SET LOckup Latch on

DFT> INSert TEst Logic -clock merge
Design-for-Test: Scan and ATPG Training3-24
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Multiple Clocks: Using Lockup Latches

Notes:

3-25 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

 SETUP> ADD CLock Groups grp1
 clk1 clk2
 SETUP> ADD CEll Model DLat1
 -Type dlatn enable data
 -Active Low
 SETUP> SET LOckup Latch ON
 .
 .
 .
 DFT> INSert TEst Logic -Clock Merge
 DFT> REPort Test Logic

 Multiple Clocks
 Using Lockup Latches

design.v dft.lib

Enhanced
Procedure File

FastScan
 Dofile

Scan Inserted
Netlist

Setup

Design Rule
 Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT Library
Non-scan

Netlist
DFTAdvisor

♦ Insert lockup latch

 SETUP> ADD CLocks 0 clk1 clk2

Verify that lockup latch
is insertedDFT> INSert TEst Logic -Clock Merge

Scan Out 2

Scan Out 1Scan In 1

CLK 1

CLK 2

grp 1

D Q

EN

grp 1

Scan In 2
Design-for-Test: Scan and ATPG Training 3-25
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Balancing Scan Chains

Notes:

3-26 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Balancing Scan Chains

♦ Testers need deep serial
memory for every scan
input and output pin.

♦ Functional pins can be
shared as scan pins in test
mode.

♦ Test time and cost is
reduced with more and
shorter scan chains.

♦ The number of scan chains
is dependent upon tester
capabilities.
Design-for-Test: Scan and ATPG Training3-26
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Balancing Scan Chains (Cont.)

Notes:

3-27 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Balancing Scan Chains (Cont.)

♦ Balance scan chains by defining
their maximum length or by setting
their total number.

 SETUP> ADD Cell Model DLat1 -Type
 dlatn enable data -Active Low

 SETUP> SET Lockup Latch ON
 DFT> INSert Test Logic -Clock Merge

 -Edge Merge -Number 5
 DFT> REPort Test Logic

design.v

Enhanced
Procedure File

FastScan
 Dofile

Scan Inserted
Netlist

Setup

Design Rule
 Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT LibraryNon-scan
Netlist

dft.lib

DFTAdvisor

5 scan chains will be balanced
automatically

Scan Enable

Scan In 1

Scan In 2

Scan In 3

Scan Out 2

Scan Out 3

Scan In 4

Scan In 5

Scan Out 4

Scan Out 5

Scan Out 1

Verify that lockup latch
is inserted
Design-for-Test: Scan and ATPG Training 3-27
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Scan Chain Ordering and Stitching

Notes:

3-28 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Scan Chain Ordering and Stitching

♦ Mux-scan designs:
● Scan cells must be correctly ordered to prevent skew during

shift.
● Better placement and routing of scan cells results in better

stitching.

♦ To optimize a scan design layout:
● Remove all previous scan chains from the design.
● Reorder the scan cells and write a scan cell order file.
● Stitch scan cells into scan chains using the scan cell order file.
Design-for-Test: Scan and ATPG Training3-28
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Scan Chain Ordering and Stitching Flow

Notes:

3-29 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

 Scan Chain Ordering and
 Stitching Flow

.

.

.
SETUP> SET System Mode DFT
DFT> RIPup Scan Chain -All
DFT> SET System Mode Setup
SETUP> DELete Scan Groups -All

SETUP> DELete Scan Chain -All

SETUP> SET System Mode DFT

DFT> RUN
DFT> INSert Test Logic \
order.txt -fixed

Dofile

Placement
and Routing

Scan Chain
Order File

order.txt

Enhanced
Procedure File

FastScan
 Dofile

Scan Inserted
Netlist

design.v

Setup

Design Rule
 Checking

Scan
Identification

Scan/Test Logic
Insertion

Scan/Test Logic
Configuration

Write Results

DFT Library
Non-scan

Netlist

dft.lib

DFTAdvisor

CLK 2
U1 U8 U5 U2

Before Reordering

Scan In 1
Scan Out 1 CLK 2

U8 U1 U5 U2
Scan In 1

After Reordering

Scan Out 1
Design-for-Test: Scan and ATPG Training 3-29
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Scan Chain Stitching: Unstitched Scan
Cells

Notes:

3-30 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Scan Chain Stitching: Unstitched Scan Cells

♦ Use the following command to
avoid stitching scan cells into scan
chains:

 DFT> INSert TEst Logic -Connect
Tied | Loop | Buffer

D Q

D QD Q

Scan_en

CLK

TIED

Loop

Buffer

Original Design
Design-for-Test: Scan and ATPG Training3-30
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Scan Chain Stitching: Stitching Existing
Scan Cells

Notes:

3-31 • Design-for-Test: Scan and ATPG: Configuring Scan
Chains/Test Logic and Full Scan Flow

Copyright © 2003 Mentor Graphics Corporation

Scan Chain Stitching: Stitching Existing Scan Cells

♦ When stitching existing scan, define the following :
● Scan enable (If, previously connected)
 SETUP> SETup SCan Insertion -SEN scan_en
● The “data_in” field of the DFT library model

model sff (D, SI, SE, CLK, Q, QB) (
 scan_definition (
 type = mux_scan;
 data_in = D;
 scan_in = SI;
 scan_enable = SE;
 scan_out = Q, QB;
 non_scan_model = dff (D, CLK, Q, QB);
)
 input (D, SI, SE, CLK) ()
 intern(_D) (primitive = _mux (D, SI, SE, _D);)
 output(Q, QB) (primitive = _dff(, , CLK, _D, Q, QB);)

CLK

_D
Q

_dff

_mux

IN0

IN1
_D

QB

SE

D

SI

SE

Q

QB

model sff

data_in
Design-for-Test: Scan and ATPG Training 3-31
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Lab: Configuring Scan Chains/Test
 Logic and Full Scan Flow

Objectives

• Set up scan pins new and existing. (internal or external)

• Create, configure, and balance scan chains.

• Insert scan cells without stitching and write out a scan chain order file.

• Stitch the scan chain with the modified order file.

List of Exercises

• Exercise 5: Setting Up New and Existing Scan Pins (Internal or External)

• Exercise 6: Balancing Scan Chains With Multiple Clock Domains

• Exercise 7: Writing and Editing Scan Chain Order Files and Stitching
(Optional)

Getting Started

1. Log in to your workstation if you are not already logged in.

2. Change to the $ATPGNW/lab3/exercise_5 directory.

shell> cd $ATPGNW/lab3/exercise_5

Exercise 5: Setting Up New and Existing Scan Pins
(Internal or External)

In this exercise, you will:

• Invoke DFTAdvisor on a design to insert full scan.
Design-for-Test: Scan and ATPG Training3-32
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
• Use DFTAdvisor to connect existing internal pins as scan inputs and
outputs for scan chains.

• Create an internal scan chain.

• Use DFTAdvisor to write a scan-inserted netlist file and ATPG setup
files.

• Set up scan pins new and existing (internal and external) and insert test
logic as shown in Figure 3-1.

Figure 3-1. Connecting Existing Pins/Pads as Scan Inputs and
Outputs

1. Invoke DFTAdvisor.

shell> dftadvisor

a. Enter the following in the appropriate dialogue boxes. Use the Browse
button to find the files quickly.

Design: 1_design.v

Design Format: Verilog

Library: adk.atpg

Log file: results/dfta_1_design.log

C L K

/q[15]Scan C hain 1

PR IM A R Y

IN PU T S
PR IM A R Y
O U T PU T S

Scan In 1 Scan O ut 1
/d[10]

/q [1]/d [0]

C L K 2

Scan C hain 2Scan In 2 Scan O ut 2

A Y

/ixpad3
/ixpad1

A Y

/ixpad0
/ixpad4

L O G IC C LO U D

YA

A Y
Design-for-Test: Scan and ATPG Training 3-33
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
b. Click on Invoke DFTAdvisor. DFTAdvisor should be up and running
with the Main and Control Panel windows both open.

2. Define the control signals.

a. No pins are required to be held at a constant value.

b. Define the clocks automatically via a dialogue box or a command.

i. Which three control signals have been identified? What are their off
states?

Signal: ___________________ Off State: ___________________

Signal: ___________________ Off State: ___________________

Signal: ___________________ Off State: ___________________

Default scan configurations will be used, so we are finished with
defining the design and are ready to go to the next stage, DFT mode,
where scan/test circuitry is identified and inserted.

3. Go to DFT mode.

Do this at the command line, or by clicking on Done with Setup in the
Control Panel pane.

You now should be in the DFT system mode.

Work through the process flow as indicated in the panel, starting with Setup
Identification.

a. Setup Identification: Select Full Scan.

b. Run Identification: Identify the items that need altering for scan/test in
the next step. Select Run with Existing Settings.
Design-for-Test: Scan and ATPG Training3-34
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Dismiss the window until only the Main and Control Panel windows remain
open.

c. Setup/Run Test Synthesis:

i. Run with the following settings; leave others with defaults.

• Synthesize Scan Circuitry into the Design

Scan List and Chain Restrictions tab:

o Insert Scan Cells Based on: The Current Scan Identification List

o Insert 2 chains

o Allow Only One Scan Enable Signal to Control all Scan Chains

Connection & Clocking Restrictions tab:

o Scan-Specific Pins on the Scan Cells Should be: Connected into a
Chain

o A Single Scan Chain Can Have: Scan Cells Controlled By
Different Clocks

Scan Chain I/O Naming tab:

o Chain Name: Chain1

o Scan Input: /ixpad0/Y

o Output: /ixpad4/A

o Controlling Clock: /clk

Note

DFTAdvisor has identified scannable instances to convert to scan,
but it does not alter the netlist.
Design-for-Test: Scan and ATPG Training 3-35
December 2003

Administrator
Highlight

Configuring Scan Chains/Test Logic and Full Scan Flow
o Select — The Specified Scan Pins are Internal and Map to Top
Level:

Scan In: d[10]

Out: q[15]

Add this chain definition to the list:

o Click Add.

i. Compare the above definition with the figure 3-1 on page 3-33 to
ensure that you understand the logic behind the choices made.

ii. Define Chain2 from the information in figure 3-33 and add it to the
list following the steps outlined for Chain1.

Other Test Pin Naming tab:

o Scan Enable: Ensure the name is scan_en (default)

iii. Click Done.

• No changes need to be made to the following:

o Synthesize Identified Test Points

o Synthesize Test Logic to Control RAMs

You mostly use the defaults for the test synthesis settings, with the
exception of the insertion of the two scan chains defined as internal
chains, and the mapping of these internal chains to the I/O of primary
ports.

Automatic Test Equipment (ATE) needs deep serial memory for every
scan input and output pin. Tester time and cost is reduced with more
and shorter scan chains.
Design-for-Test: Scan and ATPG Training3-36
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
d. You get one more chance to change things, but you don’t need to; just
run with existing settings.

e. Save Results: Click on the Save Results... button in the Button pane to
bring up the Save Results dialogue window. Use the dialogue to save
the netlist and setup files for FastScan.

i. Save a new netlist in Verilog format to the file results/design_scan.v

ii. Save an enhanced procedure ATPG setup file with a basename of
results/design_scan (no file extension)

iii. Overwrite any files of the same names that may already be present
for either the netlist or ATPG setup files.

iv. Finish by clicking OK.

You have now written the following three files:

• design_scan.v, which is the Verilog netlist

• design_scan.dofile, which is a dofile

• designscan.testproc, which is an enhanced procedure file

You are finished with creating a scan inserted netlist. The next stage is to
generate the test patterns that are used with the netlist.

4. Exit DFTAdvisor.

Exercise 6: Balancing Scan Chains With Multiple
Clock Domains

In this exercise, you will:

Note

A scan-inserted netlist has now been created that reflects the
changes you specified,
Design-for-Test: Scan and ATPG Training 3-37
December 2003

Administrator
Highlight

Configuring Scan Chains/Test Logic and Full Scan Flow
• Invoke DFTAdvisor on a design to insert full scan.

• Use DFTAdvisor to create, configure, and balance scan chains using
lockup latches.

• Insert test logic to select data from either the scan chains or the design.

• Write a scan-inserted netlist file and ATPG setup files.

You create two scan chains and insert a lockup latch as shown in Figure 3-2.

Figure 3-2. Balancing Scan Chains Using Lockup Latches

1. Change to the $ATPGNW/lab3/exercise_6 directory.

shell> cd $ATPGNW/lab3/exercise_6

2. Invoke DFTAdvisor.

shell> dftadvisor

a. Enter the following in the appropriate dialogue boxes. Use the Browse
button to find the files quickly.

Design: design_noscan.v

Design Format: Verilog

D Q

EN

/d[10]

/d[0]

CLK

CLK2

/q[15]

/q[1]

Scan Chain 1

Scan Chain 2

PRIMARY

INPUTS

PRIMARY

OUTPUTS

Scan In 1

Scan In 2

Scan Out 1

Scan Out 2
Design-for-Test: Scan and ATPG Training3-38
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Library: adk.atpg

Log file: results/design.log

b. Click Invoke DFTAdvisor. DFTAdvisor should now be up and running
with the Main and Control Panel windows open.

3. Define the control signals.

a. No pins are required to be held at a constant value.

b. Define the clocks automatically via a dialogue box or a command.

i. Which three control signals have been identified? What are their off
states?

Signal: ___________________ Off State: ___________________

Signal: ___________________ Off State: ___________________

Signal: ___________________ Off State: ___________________

c. Insert lockup latches and test circuitry for uncontrollable clocks.

i. Click on the Test synthesis Setup... button in the Button pane.

ii. After you click the Test Synthesis Setup button in the button pane
the Setup for Test Synthesis dialogue box opens. Select the
following settings:

Automatic Scan Identification tab:

o Full Scan (default)

o Scan architecture: Mux_Scan

 Lockup Latches tab:
Design-for-Test: Scan and ATPG Training 3-39
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
DFTAdvisor lets you merge scan cells with different shift clocks into
the same scan chain. However, to avoid synchronization problems
lockup latches are inserted.

d. Select Library Models...

o Specify the DFT Library Models That May be used: latch

o Enable pin: CLK

o Data Pin: D

o Output Pin: Q

e. Click the Add button.

You have specified to the tool that you will insert a lockup latch.
You selected the DLAT model from the DFT library.

Test Logic/Latch Scannability tab:

f. Enable Insertion of Test Logic for the Following Types of
Uncontrollable Signals:

o Sets.

g. Click OK to finish.

You have enabled DFTAdvisor to insert test logic for uncontrollable
clock circuitry (for example, the rstn control signal).

What command adds the latch cell model to the test logic? (Session
Transcript pane)

4. Go to DFT mode.

Do this at the command line, or by clicking on Done With Setup in the
Control Panel pane.
Design-for-Test: Scan and ATPG Training3-40
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
You now should be in the DFT system mode.

Work through the process flow as indicated in the panel, starting with Setup
Identification.

a. Setup Identification: Select Full Scan.

b. Run Identification: Identify the items that need altering for scan/test in
the next step. Select Run with Existing Settings.

Dismiss the window until only the Main and Control Panel windows remain
open.

c. Setup/Run Test Synthesis: Perform the Test Synthesis, inserting scan
chains and connecting scan circuitry, adding scan I/O and inserting a
lockup latch.

i. Run with the following settings; leave others as defaults.

• Synthesize Scan Circuitry into the Design

Scan List and Chain Restrictions tab:

o Use the Current Scan Identification List

o Insert 2 chains

o Allow Only One Scan Enable Signal to Control all Scan Chains

Connection & Clocking Restrictions tab:

o A Single Scan Chain Can Have: Scan Cells Controlled By
Different Clocks

Scan Chain I/O Naming tab:

Note

DFTAdvisor has identified scannable instances to convert to scan,
but it does not alter the netlist.
Design-for-Test: Scan and ATPG Training 3-41
December 2003

Administrator
Highlight

Configuring Scan Chains/Test Logic and Full Scan Flow
o Chain Name: Chain1

o Scan Input: /d[10]

o Output: /q[15]

o Controlling Clock: /clk

Compare the above definition with Figure 3-2 on page 3-38. and
ensure that you understand the logic behind the diagram.

Define Chain2 from the information in the figure and add it to the
list.

Lockup Latch Insertion tab:

o Verify that the correct latch is being used:

DLAT CLK D -noinvert 0

o Select Automatically Insert Lockup-Latches Between Different
Clock Domains.

Grouping Cells by Clock tab:

o Type “group1” in the Specify a Name for this “Clock Group”
field.

o Click on the pulldown button in the Scan Cells in this Group are
Controlled by these Clocks field. Highlight both /clk and /clk2.

o Click the Add button.

• No changes need to be made to the following:

Note

You must define clock group(s) to enable the insertion of lockup
latches.
Design-for-Test: Scan and ATPG Training3-42
December 2003

Administrator
Highlight

Configuring Scan Chains/Test Logic and Full Scan Flow
o Synthesize Identified Test Points

o Synthesize Test Logic to Control RAMs

You have specified the scan chains, the lockup latch and the clock to
be grouped on one chain.

d. You get one more chance to change things, but you don’t need to; just
run with existing settings.

You inserted test logic and a lockup latch between the two clock
domains, created two balanced scan chains, and mapped scan inputs
and scan ouputs to the top level external pins.

5. Check the results by issuing several report commands.

a. DFT> report scan chain

This command displays a report on all the current scan chains and
provides the following information in the session transcript area:

• Name of scan chain

• Name of the scan chain group

• Scan input and output pins

• Length of the scan chain

b. DFT> report scan cells

This command displays a report or writes a file on the scan cells within
specified scan chains and provides the following information in the
session transcript area:

• Chain cell index number (where 0 is the scan cell closest to the scan-
out pin)

• Scan chain in which the scan cell resides
Design-for-Test: Scan and ATPG Training 3-43
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
• Scan group in which the scan cell resides (dummy) is the default
group name

• Instance name of the scan cell

• Scan cell model

• Global clock for each scan cell

• Associated lockup latch for each scan cell

c. DFT> report test logic

Displays the test logic that DFTAdvisor added during the scan insertion
process in the session transcript area.

d. Save Results: Click the Save Results... button in the Button pane to
open the Save Results dialogue box.

i. Save a new netlist in Verilog format to the file
results/IOPAD_counter_scan_new.v.

ii. Save an enhanced procedure ATPG Setup file with a basename of
results/IOPAD_counter_scan_new. (no file extension)

iii. Overwrite any files of the same name that may be present for either
the netlist of ATPG Setup files.

iv. Finish by clicking OK.

You have written the following three files:

• IOPAD_counter_scan_new.v, which is the Verilog netlist

• IOPAD_counter_scan_new.dofile, which is a dofile file

• IOPAD_counter_scan_new.testproc, which is an Enhanced Procedure
file

6. Exit DFTAdvisor.
Design-for-Test: Scan and ATPG Training3-44
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Exercise 7: Writing and Editing Scan Chain Order Files
and Stitching (Optional)

In this exercise you invoke DFTAdvisor on a design to insert full scan.
You insert scan cells, but they will not be stitched into a scan chain. Then you
write out a scan cell order file.

Next, you edit the scan cell order file and then stitch scan chains using the
modified scan cell order file.

1. Change to the $ATPGNW/lab3/exercise_7 directory.

shell> cd $ATPGNW/lab3/exercise_7

2. Invoke DFTAdvisor.

shell> dftadvisor

a. Enter the following in the appropriate dialogue boxes. Use the Browse
button to find the files quickly.

Design: IOPAD_counter_noscan_new.v

Design Format: Verilog

Library: adk.atpg

Log file: results/dfta_IOPAD.log

b. Click Invoke DFTAdvisor. DFTAdvisor should now up and running
with the Main and Control Panel windows open.

3. Define the control signals.

a. No pins are required to be held at a constant value.

b. Define the clocks automatically via a dialogue box or a command.

i. Which three control signals have been identified? What are their off
states?
Design-for-Test: Scan and ATPG Training 3-45
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Signal: ___________________ Off State: ___________________

Signal: ___________________ Off State: ___________________

Signal: ___________________ Off State: ___________________

4. Go to DFT mode.

Click on Done with Setup in the DFTAdvisor control panel pane.

You should now be in DFT system mode.

Work through the process flow as indicated in the Control Panel,
starting with Setup Identification.

a. Setup Identification: Select Full Scan.

b. Run Identification: Identify the items that need altering for scan/test in
the next step. Select Run with Existing Settings.

Dismiss the window until only the Main and Control Panel windows
remain open.

c. Setup/Run Test Synthesis: Perform the Test Synthesis, inserting scan
chains and connecting scan circuitry, adding scan I/O and inserting a
lockup latch.

i. Run with the following settings; leave others as defaults.

• Synthesize Scan Circuitry into the Design

Connection & Clocking Restrictions tab:

o Scan-Specific Pins on Scan Cells Should be: Connect to a Self-
Loop

Note

DFTAdvisor has identified scannable instances to convert to scan,
but it does not alter the netlist.
Design-for-Test: Scan and ATPG Training3-46
December 2003

Administrator
Highlight

Configuring Scan Chains/Test Logic and Full Scan Flow
o A Single Scan Chain Can Have: Scan Cells Controlled by
Different Clocks

o Click Done to exit the Scan Synthesis Setup window.

DFTAdvisor avoids stitching scan cells into scan chains by connecting
the scan cells into self-loops.

Although the scan cells are not stitched into a scan chain at this time,
DFTAdvisor places scan cells using the same clock adjacent to each
other. This step enables DFTAdvisor to merge scan cells with different
shift clocks into scan chains when they are stitched.

• No changes need to be made to the following:

o Synthesize Identified Test Points

o Synthesize Test Logic to Control RAMs

You have specified the scan chains to be connected in a self-loop and
the clock that can be grouped on one chain.

ii. You get one more chance to change things, but you don’t need to;
just run with existing settings.

5. Write out the scan chain information.

a. DFT> report scan cells -all -filename \
results/scan_cell_order_file -replace

You saved the order of the scan cells in a new file named:
scan_cell_order_file in the results directory.
Design-for-Test: Scan and ATPG Training 3-47
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
6. View scan cell order file using the text viewer/editor by selecting File >
Open > Text File (Editable). This opens a View Text File dialogue box.

Figure 3-3. Scan Cell Order File

The file should look similar to the one in figure 3-3.

The following information is available from the scan_cell_order_file file:

• Instance_pathname

o A string that specifies the name of the scan cell to be placed in the
scan chain.

• Cell_id
Design-for-Test: Scan and ATPG Training3-48
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
o An integer that specifies the placement of the instance_pathname in
relation to other instance_pathnames in the scan chain. All instances
in the same chain must have unique cell_ids.

• Chain_id

o An integer that specifies the scan chain in which you want
DFTAdvisor to place the instance_pathname. DFTAdvisor places
instances with the same chain_id in the same chain.

As shown in Figure 3-3, the instances are positioned in the scan chain
according to their cell_id. Instance /ix254 has a cell_id of 0 which indicates
that it is positioned nearest to scan out.

Also note that it is located in scan chain 1.

Cell-ordering determines bit position in scan chains. Cell_id 0 is the Least
Significant Bit (LSB). FastScan loads patterns into the scan chains at bit 16
and unloads patterns out of the scan chains at bit 0.

DFTAdvisor views instances as being equal in precedence. They can be
positioned in any order and also moved into different scan chains.

Instances can be stitched into any order that you choose. However, better
placement and routing of scan cells results in better stitching.

If you create a design’s scan on a block-by-block basis, then each instance
or module has its own pre-existing scan chains or subchains. These

Note

Arbitrarily moving instances to different scan chains
can result in clock domain issues.

Note

In physical layout, the order of the scan cells is critical in routing
other design criteria. Use a placement and routing (P&R) tool to
reorder the scan cells in the scan chain and write a scan cell order
file. Then use DFTAdvisor to stitch scan cells into scan chains using
the scan cell order file that you created with the P&R tool.
Design-for-Test: Scan and ATPG Training 3-49
December 2003

Administrator
Highlight

Configuring Scan Chains/Test Logic and Full Scan Flow
subchains need to be incorporated into the top-level scan chains. This is
accomplished by DFTAdvisor during the stitch process.

Subchain instances always have a $ sign in the instance_pathname. For
example, /I$116 indicates a subchain of instance_pathname.

In the next section you are going to manually reorder the scan cells in the
file: scan_cell_order_file and stitch the reordered file into two scan chains.

7. Reorder the scan cells as shown in Figure 3-4

Figure 3-4. Scan Cell Reorder File

a. Save this file as results/scan_cell_reorder and close the viewer.

8. Save Results: Click the Save Results... button in the Button pane.

i. Use the dialogue to save the netlist in Verilog format to the file
results/IOPAD1_counter_scan_new.v.

Note

When writing a scan cell order file that includes subchains,
take into account the number of scan cells within a subchain
because this affects the overall cell_id numbering. For
example, the cell_id number for instance /I$116 is 10, the
instance below it (/ix294) is 15; this indicates that /I$116
contains 5 scan cells.
Design-for-Test: Scan and ATPG Training3-50
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
ii. Overwrite any files of the same name that may already be present for
the netlist.

iii. Finish by clicking OK.

You have written a new Verilog netlist file: IOPAD1_counter_scan.v

9. Exit DFTAdvisor.

10. Re-invoke DFTAdvisor.

shell> dftadvisor

a. Enter the following in the appropriate dialogue boxes. Use the Browse
button to find the files quickly.

Design: IOPAD_counter_noscan_new.v

Design Format: Verilog

Library: adk.atpg

Log file: results/dfta_IOPAD1.log

Note: This is the same Verilog file as before, NOT
the one you have just generated.

b. Click Invoke DFTAdvisor. DFTAdvisor should now up and running
with the Main and Control Panel windows open.

11. Define the control signals.

a. No pins are required to be held at a constant value.

b. Define the clocks automatically via a dialogue box or a command.

i. Which three control signals have been identified? What are their off
states?

Signal: ___________________ Off State: ___________________
Design-for-Test: Scan and ATPG Training 3-51
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Signal: ___________________ Off State: ___________________

Signal: ___________________ Off State: ___________________

12. Go to DFT mode.

Click on Done with Setup in the DFTAdvisor control panel pane.

You should now be in DFT system mode.

Work through the process flow as indicated in the Control Panel,
starting with Setup Identification.

a. Setup Identification:

Automatic Scan Identification tab:

o Full Scan (default)

o Scan architecture: Mux_Scan

 Lockup Latches tab:

i. Select Library Models...

o Specify the DFT Library Models: latch

o Enable pin: CLK

o Data Pin: D

o Output Pin: Q

ii. Click the Add button and click OK.

b. Run Identification: Identify the items that need altering for scan/test in
the next step. Select Run with Existing Settings.
Design-for-Test: Scan and ATPG Training3-52
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Dismiss the window until only the Main and Control Panel windows
remain open.

c. Setup/Run Test Synthesis: Perform the Test Synthesis ordering and
stitching scan cells into scan chains as specified in the scan cell reorder
file, and insert a lockup latch.

Click Setup/Run Test Synthesis in the graphic pane. This opens the
Setup/Run Test Synthesis box.

i. Run with the following settings; leave others as defaults:

• Synthesize Scan Circuitry into the Design

Scan List and Chain Restrictions tab:

o Select Insert Scan Cells Based On: Instances Specified in File:
scan_cell_reorder

o Select — Stitch Cells Using the Specified File Ordering

o Insert 2 Chains

Connection & Clocking Restrictions tab:

o Scan-Specific Pins on Scan Cells Should Be: Connected Into a
Chain

o A single Scan Chain Can Have: Scan Cells Controlled by
Different Clocks

Lockup Latch Insertion tab:

o Automatically Insert Lockup-Latches Between Different Clock
Domains

Note

DFTAdvisor has identified scannable instances to convert to scan,
but it does not alter the netlist.
Design-for-Test: Scan and ATPG Training 3-53
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Grouping Cells by Clock tab:

o Specify a Name for This “Clock Group”: Group1

o Scan Cells in this Group are Controlled by These Clocks: clk &
clk2

Select both. The pulldown menu allows you to select more than
one clock.

Click Done.

• No changes need to be made to the following:

o Synthesize Identified Test Points

o Synthesize Test Logic to Control RAMs

You have specified the scan chains, the lockup latch and the clock
that can be grouped on one chain.

ii. You get one more chance to change things, but you don’t need to.
Run with existing settings.

13. Check the results using several report commands.

a. DFT> report scan cells

Look in the Session Transcript area. What cell_id has instance /ix284
been reordered to?

What cell_id has instance q_1_rename_rename been reordered to?

Note the other changes that you made to the scan cell ordering. Refer to
Figure 3-4.

b. DFT> report scan chain
Design-for-Test: Scan and ATPG Training3-54
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Observe in the session transcript area that you created two balanced
scan chains.

c. DFT> report test logic

Observe in the session transcript area that you added two lockup
latches, two inverters, and pins.

d. Save Results: Click the Save Results... button in the Button pane to
open the Save Results dialogue box.

i. Save a new netlist in Verilog format to the file
results/IOPAD_counter_scan.v.

ii. Save an enhanced procedure ATPG Setup file with a basename of
results/IOPAD_counter. (no file extension)

iii. Overwrite any files of the same name that may be present for either
the netlist or ATPG Setup files.

iv. Finish by clicking OK.

You have written the following three files:

• IOPAD_counter_scan.v, which is the Verilog netlist

• IOPAD_counter_scan.dofile, which is a dofile file

• IOPAD_counter_scan.testproc, which is an Enhanced Procedure file

14. Exit DFTAdvisor.
Design-for-Test: Scan and ATPG Training 3-55
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Test Your Knowledge

1. What command is used to assign scan control pin connections?

__

2. True or False. During Run Identification, the netlist is altered.

__

3. Why add more scan chains? Shorter scan chains?

__

4. What command is used to assign scan ports specific names?

__

5. Why are lockup latches used?

__

6. How do you balance scan chains?

__

7. To enable the insertion of lockup latches, what must be defined?

__

8. True or False. A cell_id of 0 indicates that an instance is placed next to scan
out.

__
Design-for-Test: Scan and ATPG Training3-56
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Lab Summary

Now that you have completed the Configuring Scan Chains/Test Logic and Full
Scan Flow lab, you should know how to do the following:

• Setup scan pins new and existing (internal or external)

• Insert test logic

• Create, configure, and balance scan chains

• Insert scan cells without stitch and write out a scan chain order file

• Stitch the reordered scan cells into a scan chain

• Write a scan-inserted netlist

• Write ATPG setup files

Design-for-Test: Scan and ATPG Training 3-57
December 2003

Configuring Scan Chains/Test Logic and Full Scan Flow
Design-for-Test: Scan and ATPG Training3-58
December 2003

Module 4
Understanding ATPGMessaging

Objectives

Upon completion of this module, you will be able to:

• Analyze messages at invocation.

• Analyze messages when exiting SETUP mode.

• Analyze ATPG reporting.

• Analyze test coverage reporting.

• Use common methodologies to attain a quick estimate of pattern coverage.
Design-for-Test: Scan and ATPG Training 4-1
December 2003

Understanding ATPGMessaging
Module Topics

Notes:

4-2 • Design-for-Test: Scan and ATPG:
 Understanding ATPG Messaging

Copyright © 2003 Mentor Graphics Corporation

Module Topics

♦ This module addresses the following topics:
● DRC reporting
● ATPG reporting
● Fault classifications
● Test coverage reporting
● Common methodologies

DFT Library

Patterns

 Setup

Configuration

Generate
 Patterns

Save Results

Design Rule
Checking

scan_design.dofile

Scan Inserted
Netlist

design.v

Enhanced
Procedure FileFastScan Dofile

scan_design.procfile dft.lib

ATPG setup files

FastScan
Design-for-Test: Scan and ATPG Training4-2
December 2003

Understanding ATPGMessaging
Messages at Invocation

Notes:

4-3 • Design-for-Test: Scan and ATPG:
 Understanding ATPG Messaging

Copyright © 2003 Mentor Graphics Corporation

Messages at Invocation

// FastScan v8.2003_2.10 Wed Feb 28 22:59:12 PST 2003
// Copyright (c) Mentor Graphics Corporation, 1992-2003, All Rights Reserved.

// UNPUBLISHED, LICENSED SOFTWARE.
// CONFIDENTIAL AND PROPRIETARY INFORMATION WHICH IS THE
// PROPERTY OF MENTOR GRAPHICS CORPORATION OR ITS LICENSORS.
//
// USE OF THIS SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS.
//
//
// Mentor Graphics software executing under Sun SPARC SunOS.
// 32 bit version
//
// Compiling library ...
// Reading Verilog Netlist ...
// Reading Verilog file test_scan.v
// Finished reading file test_scan.v
// command: add scan groups grp1 test_scan.testproc
// command: add scan chains chain1 grp1 scan_in1 scan_out1
// command: add scan chains chain2 grp1 scan_in2 scan_out2
// command: add clocks 0 CLOCK

♦ FastScan displays the following messages at invocation:

Current version
of FastScan

Compiles DFT library then
parses netlist

Simple.log

. . .
Design-for-Test: Scan and ATPG Training 4-3
December 2003

Understanding ATPGMessaging
Messages at Invocation: Warnings

Notes:

4-4 • Design-for-Test: Scan and ATPG:
 Understanding ATPG Messaging

Copyright © 2003 Mentor Graphics Corporation

Messages at Invocation: Warnings

♦ FastScan reports the following types of warnings at
invocation:

If, a model is defined several times
in the DFT library, the last defined
(model) is used

Warns if model has unused nets

Warns if unused nets exist in netlist

•Major problems at invocation cause
 the tool to error and exit
•A file describing the problem will be
created in the home directory
 ~/<toolname> .tx

// Warning: Net 'CADJL0' in model 'HSTL2OHV15C' is unused

// Reading Verilog Netlist ...

// Warning: Floating input 'fr_ct_sel' at instance 'design_core0' in module 'design'

// Warning: Net 'Q0' in module 'R64X8S' is not driven

Simple.log

// FastScan v8.2003_2.10 Wed Feb 28 22:59:12 PST 2003
// Copyright (c) Mentor Graphics Corporation, 1992-2003, All Rights Reserved.

// UNPUBLISHED, LICENSED SOFTWARE.

// PROPERTY OF MENTOR GRAPHICS CORPORATION OR ITS LICENSORS.
//
// USE OF THIS SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS.
//
//
// Mentor Graphics software executing under Sun SPARC SunOS.
// 32 bit version
//
// Compiling library …

// Warning: Model name 'EN0_UDP' is duplicated; Last model definition is selected

// CONFIDENTIAL AND PROPRIETARY INFORMATION WHICH IS THE

. . .

. . .

. . .

. . .

. . .

. . .
Design-for-Test: Scan and ATPG Training4-4
December 2003

Understanding ATPGMessaging
Messages when exiting Setup

Notes:

4-5 • Design-for-Test: Scan and ATPG:
 Understanding ATPG Messaging

Copyright © 2003 Mentor Graphics Corporation

Messages When Exiting Setup

♦ FastScan reports the following messages when exiting Setup:

Stores netlist in an internal format
(flattened) and a netlist summary is
 reported
Classifies design characteristics
to improve ATPG efficiency

Verifies scan chain operation
through simulation

Performs the majority
 of Design Rule Checks

 (clock, RAM, contention)

Simple.log

// command: add clocks 0 fr_sc_rclk1_in2

// command: set system mode atpg

// Begin circuit learning analyses.

// Simulating load/unload procedure in grp1 test procedure file.

The tools replace the design cells
in the netlist with DFT primitives

// Begin scan clock rules checking.

// Flattening process completed, design_cells=129956 leaf_cells=105243

// 30 scan clock/set/reset lines have been identified.
// All scan clocks successfully passed off-state check.
// 1931 sequential cells passed clock stability checking.
// All scan clocks successfully passed capture ability check.

// Begin scan chain identification process, memory elements = 27376.

// Reading group test procedure file modified_5_120_bypass.testproc.

. . .

. . .

. . .
. . .

. . .

. . .

. . .

. . .

. . .
Design-for-Test: Scan and ATPG Training 4-5
December 2003

Understanding ATPGMessaging
ATPG Reporting

Notes:

4-6 • Design-for-Test: Scan and ATPG:
 Understanding ATPG Messaging

Copyright © 2003 Mentor Graphics Corporation

ATPG Reporting

♦ FastScan reports the following messages and status
during ATPG

Simple.log

// command: create patterns
No faults in fault list. Adding all faults...
// --

// Simulation performed for #gates = 133 #faults = 90
// system mode = ATPG pattern source = internal patterns
// --

// #patterns test #faults #faults # eff. # test process
// simulated coverage in list detected patterns patterns CPU time
// begin random patterns: capture clock = /CLOCK, observe point = MASTER

// begin random patterns: capture clock = none, observe point = MASTER
// deterministic ATPG invoked with abort limit = 30
// --- ------ --- --- --- --- 0.00 sec 2/0/0
// --

// Simulation performed for #gates = 133 #faults = 88
// system mode = ATPG pattern source = internal patterns
// --

// #patterns test #faults #faults # eff. # test process
// simulated coverage in list detected patterns patterns CPU time
// deterministic ATPG invoked with abort limit = 30
// --- ------ --- --- --- --- 0.00 sec 2/0/0
// 32 100.00% 0 88 5 5 0.00 sec
// --

Use the command
CREate PAtterns to start ATPG.

By default, patterns are created
“internally” rather than read in
 from an “external” file.

By default, FastScan captures with
one clock at a time. After the clock’s
effectiveness is exhausted,
FastScan moves to another clock.

Deterministic patterns are created
once all random patterns for all
clocks are used up.

Performs test generation on selected
faults from current fault list.

. . .

. . .
Design-for-Test: Scan and ATPG Training4-6
December 2003

Understanding ATPGMessaging
ATPG Reporting (Cont.)

Notes:

4-7 • Design-for-Test: Scan and ATPG:
 Understanding ATPG Messaging

Copyright © 2003 Mentor Graphics Corporation

ATPG Reporting (Cont.)

♦ FastScan reports the following messages:

Simple.log

Command for pattern creation:
CREate PAtterns

// command: add fau -all

// command: create patterns
// Simulation performed for #gates = 353875 #faults = 11683

// system mode = ATPG pattern source = internal patterns
 / / #patterns test #faults #faults # eff. # test process

 / / simulated coverage in list detected patterns patterns CPU time

// begin random patterns: capture clock = /clk1, observe point = MASTER
// deterministic ATPG invoked with abort limit = 30

Compressed ATPG

. . .

. . .

// #patterns test #faults #faults # eff. # test
detected patterns patternssimulated coverage in list//

 710764.42%// 32 31314305
 193880.27%// 64 63322367

85.14%// 96 95321771 596

. . .

. . .
Design-for-Test: Scan and ATPG Training 4-7
December 2003

Understanding ATPGMessaging
Special Messages in ATPG Reporting

Notes:

4-8 • Design-for-Test: Scan and ATPG:
 Understanding ATPG Messaging

Copyright © 2003 Mentor Graphics Corporation

Special Messages in ATPG Reporting

♦ FastScan reports the following special messages:

// command: CREate PAtterns

// Warning: Contention on (205816), number patterns rejected = 32.

// Warning: Unsuccessful test for 2533 faults.

Simulated patterns that report
bus contention are discarded

Summary of rejected patterns

.

.

.

.

.

.

Design-for-Test: Scan and ATPG Training4-8
December 2003

Understanding ATPGMessaging
Test Coverage Reporting

Notes:

4-9 • Design-for-Test: Scan and ATPG:
 Understanding ATPG Messaging

Copyright © 2003 Mentor Graphics Corporation

Test Coverage Reporting

♦ FastScan reports faults as testable
or untestable

♦ The following are testable (TE)
faults:

● Detected (DT):
– Det_Simulation (DS)
– Det_Implication (DI)
– Det_Robust (DR)

● Posdet (PD)
– Posdet_Untestable (PU)
– Posdet_Testable (PT)

● ATPG_Untestable (AU)
● Undetected

– Uncontrolled (UC)
– Unobservable (UO)

// command: report statistics

 Statistics report

 #faults #faults
fault class (coll.) (total)

----------------------- ------- -------

FU (full) 562 896

----------------------- ------- -------
DS (det_simulation) 440 746

DI (det_implication) 90 112

UU (unused) 10 10
TI (tied) 8 8

BL (blocked) 4 4

AU (atpg_untestable) 10 16
----------------------- ------- -------

test_coverage 98.15% 98.17%

fault_coverage 94.31% 95.76%

atpg_effectiveness 100.00% 100.00%
 --

#test_patterns 44

#simulated_patterns 320
CPU_time (secs) 0.3

 --
Design-for-Test: Scan and ATPG Training 4-9
December 2003

Understanding ATPGMessaging
Test Coverage Reporting (Cont.)

Notes:

4-10 • Design-for-Test: Scan and ATPG:
 Understanding ATPG Messaging

Copyright © 2003 Mentor Graphics Corporation

Test Coverage Reporting (Cont.)

♦ The following
are untestable
faults:

● Unused (UU)
● Tied (TI)
● Blocked (BL)
● Redundant

(RE) Site of “Unused” Fault Sites of “Tied” Faults

Site of “Blocked” Fault Site of “Redundant” Fault

GND

X s-a-1

GND

DB C

X
s-a-1

s-a-0

A
D Q

QB
X s-a-1
Design-for-Test: Scan and ATPG Training4-10
December 2003

Understanding ATPGMessaging
Test Coverage Reporting (Cont.)

Notes:

4-11 • Design-for-Test: Scan and ATPG:
 Understanding ATPG Messaging

Copyright © 2003 Mentor Graphics Corporation

Test Coverage Reporting (Cont.)

// command: report statistics

 Statistics report

 #faults #faults
fault class (coll.) (total)

----------------------- ------- -------

FU (full) 562 896
----------------------- ------- -------

DS (det_simulation) 440 746

DI (det_implication) 90 112

UU (unused) 10 10
TI (tied) 8 8

BL (blocked) 4 4

AU (atpg_untestable) 10 16
----------------------- ------- -------

test_coverage 98.15% 98.17%

fault_coverage 94.31% 95.76%
atpg_effectiveness 100.00% 100.00%

 --

#test_patterns 44

#simulated_patterns 320
CPU_time (secs) 0.3

 --

Test coverage:
recommended metric for
uncollapsed fault set

 Test coverage: percentage of all
 testable faults

 #DT + (#PD * posdet_credit)
 #Testable Faults

Fault coverage: percentage of all faults
both testable and untestable

 #DT + (#PD * posdet_credit)
 #Total Faults

Fault
coverage

ATPG Effectiveness:
A measure of the tool’s ability to detect
a fault or prove that a test cannot be
created with current settings

= Test Coverage

Fault Coverage =
Design-for-Test: Scan and ATPG Training 4-11
December 2003

Understanding ATPGMessaging
Test Coverage Reporting Fault
Collapsing

Notes:

4-12 • Design-for-Test: Scan and ATPG:
 Understanding ATPG Messaging

Copyright © 2003 Mentor Graphics Corporation

Test Coverage Reporting: Fault Collapsing

♦ After FastScan identifies faults, faults that behave the same
are reduced, or collapsed, into one equivalent fault.

● Multiple faults are targeted with one pattern.
● Total number of generated patterns is reduced.

♦ EQ is the designator for equivalent faults.

 (Equal to the fault listed above it in the fault list.)

♦ A test for one of the faults above is equal to the test for the
other two.
Design-for-Test: Scan and ATPG Training4-12
December 2003

Understanding ATPGMessaging
Determining the Cause of Undetected
Faults

Notes:

4-13 • Design-for-Test: Scan and ATPG:
 Understanding ATPG Messaging

Copyright © 2003 Mentor Graphics Corporation

Determining the Cause of Undetected Faults

♦ Use the REPort
TEstability Data
command for the following:

● To identify circuitry
connections that cause
test coverage problems

● To analyze collapsed faults
for a specific fault class

● To display analysis

ATPG> REPort TEstability Data -class AU

// fault analysis summary of 7 faults

// number faults connected to tsd_enable = 7

// number faults unclassified = 0
Design-for-Test: Scan and ATPG Training 4-13
December 2003

Understanding ATPGMessaging
Determining the Cause of Undetected
Faults (Cont.)

Notes:

4-14 • Design-for-Test: Scan and ATPG:
 Understanding ATPG Messaging

Copyright © 2003 Mentor Graphics Corporation

Determining the Cause of Undetected Faults (Cont.)

♦ Use the REPort FAults
command to display fault
information from the current
fault list ATPG> REPort FAults -class

ATPG_UNTESTABLE

 0 AU /I$7/OUT

 1 EQ /I$7/IN

 0 EQ /I$1/en

 1 AU /I$7/OUT

 0 EQ /I$7/IN

 1 EQ /I$1/en

 0 AU /I$4/i1

 0 AU /I$20/en

 1 AU /I$20/en

 0 AU /I$2/en

 1 AU /I$2/en

Fault value:
Either 0 (for stuck-at-0)
or 1 (for stuck-at-1)

Fault code

Fault site
Design-for-Test: Scan and ATPG Training4-14
December 2003

Understanding ATPGMessaging
Determining the Cause of Undetected
Faults (Cont.)

Notes:

4-15 • Design-for-Test: Scan and ATPG:
 Understanding ATPG Messaging

Copyright © 2003 Mentor Graphics Corporation

Determining the Cause of Undetected Faults (Cont.)

♦ Use the ANAlyze FAult command to identify why a fault
 is not detected.

ATPG> ANAlyze FAult I$20/en -stuck_at 1

// --

// Fault analysis for /I$20 (16) input en (0) stuck at 1

// --

// Current fault classification = AU (atpg_untestable)

// Fault is blocked at /I$20 (16) due to tri-state enable.

// Controllability justification was successful (data
accessible using parallel_pattern 0).

// Pattern type: Basic_scan.
// Test generation cannot be performed - no unblocked

path to observe point.

ATPG> REPort FAults -Class
ATPG_UNTESTABLE
 0 AU /I$7/OUT
 1 EQ /I$7/IN
 0 EQ /I$1/en
 1 AU /I$7/OUT
 0 EQ /I$7/IN
 1 EQ /I$1/en
 0 AU /I$4/i1
 0 AU /I$20/en
 1 AU /I$20/en
 0 AU /I$2/en
 1 AU /I$2/en
Design-for-Test: Scan and ATPG Training 4-15
December 2003

Understanding ATPGMessaging
Lab: Understanding ATPG Messaging

Objectives

• Read and analyze:

o Messages at invocation.

o Warnings at invocation.

o Messages when exiting setup.

o DRC reporting.

o ATPG reporting.

o Fault classifications.

o Special messages.

o Test coverage reporting.

• Determine the cause of undetected faults.

• Specify areas not to target for ATPG.

• Write an external fault list.

• Use common methodologies to attain a quick estimate
 of pattern coverage:

o Assessing test pattern coverage through implication.

o Using Fault sampling.

o Limiting ATPG test coverage.

o Loading in an external fault list.
Design-for-Test: Scan and ATPG Training4-16
December 2003

Understanding ATPGMessaging
List of Exercises

• Exercise 8: Reading and Analyzing Messages

• Exercise 9: Determining the Cause of Undetected Faults and Adding
NOfaults

• Exercise 10: Common Methodologies to Attain a Quick Estimate of Test
Coverage

Getting Started

1. Log in to your workstation if you are not already logged in.

2. Change to the $ATPGNW/lab4/exercise_8 directory.

shell> cd $ATPGNW/lab4/exercise_8

Exercise 8: Reading and Analyzing Messages

• In this exercise, you will:

• Invoke FastScan on a design and apply pattern types.

• Read and analyze the following messages: invocation, warning, exiting
setup mode, DRC, ATPG, fault classifications, special, and test
coverage.

• Create patterns using the create patterns command and observe
ATPG messaging.

1. Invoke FastScan on the following circuit:

Design: module4_8.v

Design Format: Verilog

Library: adk.atpg
Design-for-Test: Scan and ATPG Training 4-17
December 2003

Understanding ATPGMessaging
Log file: results/ex_8.log

2. Study the shell window to identify the current version of FastScan:

3. Study the Session Transcript window to identify the following:

a. Information messages:

i. __

ii. __

iii. __

iv. __

v. __

b. Warning messages:

i. What problem is there with mux21_macro?

ii. Which modules are undefined?

iii. What is the issue with the nets?

4. Black box the undefined module. (The command is listed in the Session
Transcript window as a warning.)

What command do you use? _____________________________________

Open the reference page for the black box command and explain what
the -auto switch does (Help menu):
Design-for-Test: Scan and ATPG Training4-18
December 2003

Understanding ATPGMessaging
__

__

Black boxing is used for the following:

• Analysis of incomplete designs

• Isolating analog blocks

• Isolating proprietary Intellectual Property (IP)

5. Add clocks automatically.

Various messages and warnings appear in the Session Transcript window.
Study these and answer the following question. Remember that
documentation is available to you if you need help answering the questions.

a. How many loops were broken from adding the clocks?

b. How many, if any, of the loops were duplicated?

c. What is an FN1 violation?

d. How many floating nets are there?

e. FastScan replaces the design cells in the netlist with DFT primitives.
The netlist is stored in an internal format (flattened).

The following information is available after flattening:
Design-for-Test: Scan and ATPG Training 4-19
December 2003

Understanding ATPGMessaging
i. No. of design cells: _______________________________________

ii. No. of leaf cells: ___

iii. No. of library primitives: __________________________________

iv. No. of netlist primitives: ___________________________________

v. No. of simulation gates: ___________________________________

vi. No. of primary inputs: ___________ primary outputs ___________

f. FastScan classifies the design’s characteristics in order to enable it to
improve ATPG efficiency. The process is called ‘circuit learning’.

Look at the results of the circuit learning analyses and identify the
following:

i. No. of equivalent gates: ___________________________________

ii. No. of learned relationships: _______________________________

iii. No. of wired_gates modeled as WIRE gates: __________________

g. The last step of adding control signals automatically is to actually
identify them — control signals identification analysis.

i. How many control signals were identified in all? _______________

ii. How many clocks are there? _______________________________

6. Add scan group, test procedure file, and scan circuitry.

Had we already inserted the scan circuitry using DFTAdvisor, the generated
dofile would perform the setup for us. However, since we did not generate a
dofile, we have to define the scan circuitry now.

a. Click on Scan Circuitry in the Circuit Setup pane. A Setup Scan
Circuitry dialogue box opens.
Design-for-Test: Scan and ATPG Training4-20
December 2003

Understanding ATPGMessaging
b. Scan Groups Tab:

Group Name: grp1

Test Procedure file: exercise_8/gate_afterdft_100.testproc

c. Scan Chains tab:

Add the following scan definitions:

7. The circuit in this lab has the potential for bus contention. For the initial
run, force all buses to a non-contention state to ensure that the test generator
does not create patterns that cause contentions.

a. Set contention check by typing:

SETUP> set contention check on -atpg

If FastScan cannot satisfy this condition, the tool aborts the fault, excludes
the pattern from the final test set, and displays a message indicating the
number of these aborted faults for each simulation pass.

8. Go to ATPG mode.

Table 4-1. Scan Definitions

Group Chain Scan_In Scan_out

grp1 chain1 scan_in5 scan_out1

grp1 chain2 scan_in6 scan_out2

grp1 chain3 scan_in7 scan_out3

grp1 chain4 scan_in8 scan_out4

Note

You may find it useful for future labs to create a dofile with the scan
setup commands that are generated in this section. There are 5
command lines in the file. Remember to delete unwanted text,
including the ‘// command:’ at the beginning of each line.
Design-for-Test: Scan and ATPG Training 4-21
December 2003

Understanding ATPGMessaging
a. Click on the Done With Setup button in the graphics pane. A FastScan
Session Purpose dialogue box opens.

i. Click on the Pattern Generation button.

You should now be in ATPG system mode.

ii. Upon exiting setup, FastScan performs the majority of Design Rule
Checks (clock, RAM, contention) using the information in the test
procedure file. Several messages are written to the Sessions
Transcript window:

a. How many memory elements are there? ___________________

b. What is the length of each of the four scan chains?
chain1______chain2______chain3______chain4______

c. What is a T18-1 violation? ______________________________

__

d. The warning refers to an ‘entered value’. Where is this value
defined? ___

e. How many scan clock set/reset lines have been identified?
__

f. How many gates have an E5 violation? _______ Define an E5
violation:

__

9. Generate random and deterministic patterns for stuck-at-faults.

Observe in the Session Transcript window that FastScan reports
messages and status during ATPG.

FastScan begins with random pattern generation, then deterministic
pattern generation.
Design-for-Test: Scan and ATPG Training4-22
December 2003

Understanding ATPGMessaging
10. Note that FastScan reports messages and status during ATPG to the
Sessions Transcript window. The flow goes from random pattern
generation to deterministic pattern generation.

a. Enter the number of simulated and effective patterns for the various
types:

b. What is the difference between effective and simulated patterns?

11. Close the FastScan ATPG Run Statistics dialogue box.

12. Obtain a detailed report by issuing the following command:

ATPG> report statistics

The results are displayed in the Session Transcript window. This
information provides data about the number of collapsed and total faults in
each class and across all classes. Details of coverage, ATPG effectiveness,
and simulated patterns are found here.

a. Refer to the Session Transcript window to fill in the following:

Table 4-2. ATPG Run Statistics

Type
Simulated
Patterns

Effective
Patterns

Random

Determin-
istict

Totals

Table 4-3. Report Statistics ATPG

Fault Class # faults (coll.) # faults (total)

FU (full)

UO (unobserved)
Design-for-Test: Scan and ATPG Training 4-23
December 2003

Understanding ATPGMessaging
13. Next, you are going to do a second run using the dynamic create
patterns command.

a. To reset Fastscan ATPG go back to SETUP mode.

DS (det_sim)

DI (det_imp)

PU (posdet_untestable)

PT (posdet_testable)

UU (unused)

TI (tied)

RE (redundant)

AU (atpg_untestable)

Note

Refer to the ATPG Tools Reference Manual for clarification on the
fault classes.

Table 4-4. Report Coverage/Effectiveness ATPG

Cov./Effect. # faults (coll.) # faults (total)

test_coverage

fault_coverage

atpg_effectiveness

test_patterns

simulated_patterns

CPU_time (secs)

Table 4-3. Report Statistics ATPG

Fault Class # faults (coll.) # faults (total)
Design-for-Test: Scan and ATPG Training4-24
December 2003

Understanding ATPGMessaging
You can do this with a command or by clicking on the Done With
Pattern Generation button in the Control Panel pane or by entering a
command at the command line prompt.

What two things happen when you enter SETUP mode?

i. __

ii. __

14. Go to ATPG mode.

a. Create dynamically compressed patterns.

ATPG > create patterns

Creating patterns using this command may take a little while. Look at
the Session Transcript window to fill in the blanks.

What is the order of events as described in the Session Transcript
window?

1. Adding ___

2. _______________performed for___________________________

3. System mode = _____________

4. Pattern source = __

5. Simulated coverage _________________detected______________

6. ________________ATPG invoked with abort limit =___________

i. What is the final pattern count?____________________________

ii. Obtain a detailed report using report statistics on the
design to fill in the table:
Design-for-Test: Scan and ATPG Training 4-25
December 2003

Understanding ATPGMessaging
Table 4-5. Report Statistics ATPG

Table 4-7. Report Coverage/Effectiveness ATPG

Compared to the previous run, how may patterns are there?

__

Table 4-6.

Fault Class # faults (coll.) # faults (total)

FU (full)

UO (unobserved)

DS (det_sim)

DI (det_imp)

PU (posdet_untestable)

PT (posdet_testable)

UU (unused)

TI (tied)

RE (redundant)

AU (atpg_untestable)

Table 4-8.

Cov./Effect. # faults (coll.) # faults (total)

test_coverage

fault_coverage

atpg_effectiveness

test_patterns

simulated_patterns

CPU_time (secs)
Design-for-Test: Scan and ATPG Training4-26
December 2003

Understanding ATPGMessaging
15. Exit FastScan.

Exercise 9: Determining the Cause of Undetected
Faults and Adding NOfaults

In this exercise you invoke FastScan on a design and apply pattern types. You
read and analyze messages then determine the cause of undetected faults by using
the following commands:

• Report Testability Data

o Identify circuitry connections that cause problems.

o Analyze collapsed faults for a specific fault class.

o Display analysis.

• Report Faults

o Display fault information from the current fault list.

• Analyze Fault

o Identify why a fault is not detected.

Finally, you use the NOfault command to place nofault settings on specified
instances, re-run FastScan, and observe test coverage results.

Getting Started

1. Change to the $ATPGNW/lab4/exercise_9 directory.

shell> cd $ATPGNW/lab4/exercise_9

2. Invoke FastScan on the following circuit:

Design: module4.v

Library: atpglib
Design-for-Test: Scan and ATPG Training 4-27
December 2003

Understanding ATPGMessaging
Log file: results/ex_9.log

3. Study the Session Transcript window to identify the following:

a. Information messages:

• Compiling library

• Reading Verilog netlist

• Reading Verilog file

b. Warning messages:

What warning messages do you see?

4. Add clocks automatically.

Various messages and warnings appear in the transcript. What warning
messages do you see?
__

__

5. The next step is to add the scan group, test procedure file, and scan
circuitry, as you did in the previous exercise.

If you saved the scan setup file as a dofile in the last exercise you will find it
useful here. You will have to edit it to alter the name of the test procedure
(.testproc) file to make it applicable for this lab. If you did not save it,
perform the following steps:

a. Set up the Scan Group with the following information:

i. Scan Groups Tab:

Group Name: grp1
Design-for-Test: Scan and ATPG Training4-28
December 2003

Understanding ATPGMessaging
Test Procedure file: exercise_9/gate_afterdft_100.testproc

ii. Scan Chains tab:

a. Add the following scan definitions:

6. Normal full scan vectors are not sufficient for this circuit, so we are going
to generate more complex vectors. These will be explained fully in the next
module. For now, it is not necessary to understand the concept in order to
use them.

Set simulation mode to RAM sequential and clock sequential.

SETUP > set simulation mode ram -depth 3

7. Go to ATPG mode.

You should now be in ATPG system mode.

Upon exiting setup, FastScan performs the majority of Design Rule Checks
(clock, RAM, and contention) using the information in the test procedure
file. Several informational messages are output as it goes through the
procedure.

a. How many RAMs are there? _________________________________

8. Generate random and deterministic patterns for stuck-at faults.

9. Note the number of simulated and effective patterns for the various types.

Table 4-9. Scan Definitions

Group Chain Scan_In Scan_out

grp1 chain1 scan_in5 scan_out1

grp1 chain2 scan_in6 scan_out2

grp1 chain3 scan_in7 scan_out3

grp1 chain4 scan_in8 scan_out4
Design-for-Test: Scan and ATPG Training 4-29
December 2003

Understanding ATPGMessaging
Table 4-10. ATPG Run Statistics

10. Close the FastScan ATPG Run Statistics dialogue box.

11. Obtain a detailed report of the design’s statistics for the ATPG run and fill
in the following statistics:

Table 4-12. Report Statistics ATPG

Table 4-11.

Type
Simulated
Patterns

Effective
Patterns

Random

Determin-
istict

Totals

Table 4-13.

Fault Class # faults (coll.) # faults (total)

FU (full)

UO (unobserved)

DS (det_sim)

DI (det_imp)

PU (posdet_untestable)

UU (unused)

TI (tied)

BL (blocked)

RE (redundant)

AU (atpg_untestable)
Design-for-Test: Scan and ATPG Training4-30
December 2003

Understanding ATPGMessaging
Table 4-14. Report Coverage/Effectiveness ATPG

a. What types of test patterns make up the complete set, and how many
patterns of each type are there?

• _________________________ No. of patterns ___________________

• _________________________ No. of patterns ___________________

• _________________________ No. of patterns ___________________

12. Notice that there are still undetected faults in several specific fault
classifications that are affecting test coverage. You need to analyze these
and determine their cause. First we look at the various fault classes and
analyze them.

a. Start with the ATPG untestable faults.

 ATPG> report testability data -class au

b. Repeat this for class ut.

Table 4-15.

Cov./Effect. # faults (coll.) # faults (total)

test_coverage

fault_coverage

atpg_effectiveness

test_patterns

simulated_patterns

CPU_time (secs)

Note

Refer to Chapter 2 of the Scan and ATPG Process Guide for more
information on fault classes and their definitions.
Design-for-Test: Scan and ATPG Training 4-31
December 2003

Understanding ATPGMessaging
c. Repeat this for class ud.

Fill in the table below with the results from this command:

13. Next you look at individual faults, still on a class by class basis.

a. First you get the fault information from the fault list.

 ATPG> report fault -class atpg

This opens a Report Faults Output dialogue box, which show the following
information for every fault in the requested class:

This gives you all the information needed to further investigate individual faults.

a. Choose one of the faults in the list and investigate further.

 ATPG> analyze fault /p1/pic1/regs/U37/A0 -stuck 0

Why did we use -stuck 0?

What does the resulting fault analysis (seen in the Sessions Transcript
window) tell you about the fault?

Table 4-16. Report Testability Data

Class Total No. of
faults

No. of faults
tied by
constr.

No. of faults
connected
to RAM

No. of faults
unclassified

AU

UT

UD

Type (fault value)
Stuck at 1 or 0

Code (fault code)
AU (in this case)

Pin Pathname (fault
site) e.g.
/p6/pic1/regs/U43/S0
Design-for-Test: Scan and ATPG Training4-32
December 2003

Understanding ATPGMessaging

b. Now analyze another fault and investigate further.

 ATPG> analyze fault /p1/pic1/regs/U37/A1 -stuck 0

What does the resulting fault analysis (seen in the Sessions Transcript
window) tell you about the fault?

c. Now look at the faults for the Tied fault class. What command do you
use? ___

Type this command at the command prompt.

d. Now analyze the following three faults and determine what they are tied
to, using the same command as in part 13.b.

Table 4-17. Analyze Faults

Node
Stuck at
value

Source of the tied
gate

Tied to what
value?

/p1/pic1/add_794/U39
/Y

1

/p1/pic1/add_794/U39
/A0

0

/p1/pic1/add_794/U39
/A1

0

Design-for-Test: Scan and ATPG Training 4-33
December 2003

Understanding ATPGMessaging
What can you determine from analyzing these last three faults?

e. Close the Report Faults Output dialogue box.

After FastScan identifies faults, faults that behave the same are reduced,
or collapsed, into one equivalent fault. Multiple faults are targeted with
one pattern, which reduces the number of generated patterns. EQ is the
designator for equivalent faults. An equivalent fault is equal to the fault
listed above it in the fault list.

14. Next we use the Hierarchy Browser to remove fault settings from specific
instances, generate patterns and observe test coverage results. To do this,
reset FastScan.

a. Reset Fastscan ATPG by going back to Setup mode.

b. Immediately go back to ATPG mode.

Using the Hierarchy Browser to delete faults enables FastScan to
bypass specified pin pathnames and pin names from becoming fault
sites.

15. Add all faults to the design.

a. Click on Fault Universe then choose Customize. The Setup Fault
Universe dialogue box opens.

i. Fault Type/List tab: Create a Fault List:

Note

You can issue the Add Nofault command before using the Add
Faults command to achieve the same effect.

Once you add nofault settings, the tool loses all information added
after flattening such as ATPG functions and constraints.
Design-for-Test: Scan and ATPG Training4-34
December 2003

Understanding ATPGMessaging
a. Select — Add Faults to ALL DESIGN OBJECTS.

ii. Leave the default settings for the rest.

b. Click OK. In the Session Transcript window observe the command that
has been executed.

What is the command?

c. Click on Fault Universe then choose Customize again. The Setup Fault
Universe dialogue box opens.

i. Delete Faults tab:

Use the Hierarchy Browser to delete faults from the following
instances:

/p6/pic1/regs/U41/A
/p5/pic1/regs/U41/A
/p4/pic1/regs/U41/A
/p2/pic1/regs/U41/A
/p1/pic1/regs/U41/A

After entering the first one, try other methods other than the Hierarchy
Browser to enter the names. For example, selecting an entered fault puts
it in the Design Object Pathname box. It then can be edited and the new
path added to the list.

ii. Leave the default settings for the rest.

d. Click OK to exit the dialogue box.

e. Look in the Session Transcript window for the command executed by
this process.

The command will be:

 Delete faults /p6/....../U41/A -stuck_at 01
Design-for-Test: Scan and ATPG Training 4-35
December 2003

Understanding ATPGMessaging
16. Generate random and deterministic stuck-at faults.

17. Note the number of simulated and effective patterns for the various types.

Table 4-18. ATPG Run Statistics

18. Obtain a detailed report of the design’s statistics for the ATPG run.

Fill in the following statistics:

Table 4-20. Report Statistics ATPG

Table 4-19.

Type
Simulated
Patterns

Effective
Patterns

Random

Determin-
istict

Totals

Table 4-21.

Fault Class # faults (coll.) # faults (total)

FU (full)

UO (unobserved)

DS (det_sim)

DI (det_imp)

PU (posdet_untestable)

UU (unused)

TI (tied)

BL (blocked)

RE (redundant)
Design-for-Test: Scan and ATPG Training4-36
December 2003

Understanding ATPGMessaging
Table 4-22. Report Coverage/Effectiveness ATPG

a. What types of test patterns make up the complete set, and how many
patterns of each type are there?

• _________________________ No. of patterns ___________________

• _________________________ No. of patterns ___________________

• _________________________ No. of patterns ___________________

By using the NOfault command to place nofault settings on specified
instances, Fastscan generated patterns that produced better fault coverage,
although only slightly better in this lab.

In the next exercise, you use common methodologies to attain a quick
estimate of pattern coverage.

19. Exit FastScan.

AU (atpg_untestable)

Table 4-23.

Cov./Effect. # faults (coll.) # faults (total)

test_coverage

fault_coverage

atpg_effectiveness

test_patterns

simulated_patterns

CPU_time (secs)

Table 4-21.

Fault Class # faults (coll.) # faults (total)
Design-for-Test: Scan and ATPG Training 4-37
December 2003

Understanding ATPGMessaging
Exercise 10: Common Methodologies to Attain a Quick
Estimate of Test Coverage

In this exercise, you invoke FastScan on a design and apply pattern types to
determine initial pattern coverage. Then you use the following common
methodologies to attain a quick estimate of pattern coverage:

• Assessing through implication

• Using fault sampling

• Limiting ATPG test coverage

• Loading in an external fault list

Getting Started

1. Change to the $ATPGNW/lab4/exercise_10 directory.

shell> cd $ATPGNW/lab4/exercise_10

2. Invoke FastScan on the following circuit:

Design: module4.v

Library: atpglib

Log file: results/ex_10.log

3. Add clocks automatically.

Various messages and warnings appear in the transcript. What warning
messages do you see?

__

__
Design-for-Test: Scan and ATPG Training4-38
December 2003

Understanding ATPGMessaging
4. The next step is to add the scan group, test procedure file, and scan
circuitry, as you did in the previous exercise.

If you saved the scan setup file as a dofile in exercise 8 you will find it
useful here. You will have to edit it to alter the name of the test procedure
(.testproc) file to make it applicable for this lab.

a. Set up the Scan Group with the following information:

b. Scan Groups Tab: Add scan group, test procedure file, and scan
circuitry.

Group Name: grp1

Test Procedure file: exercise_10/gate_afterdft_100.testproc

i. Scan Chains tab:

a. Add the following scan definitions:

5. As in exercise 9, normal full scan vectors are not sufficient for this circuit
so we are going to generate more complex vectors. These will be explained
fully in the next module. For now, it is not necessary to understand the
concept in order to use them.

Set simulation mode to RAM sequential and clock sequential.

SETUP > set simulation mode ram -depth 3

6. Go to ATPG mode.

Table 4-24. ATPG Run Statistics

Group Chain Scan_In Scan_out

grp1 chain1 scan_in5 scan_out1

grp1 chain2 scan_in6 scan_out2

grp1 chain3 scan_in7 scan_out3

grp1 chain4 scan_in8 scan_out4
Design-for-Test: Scan and ATPG Training 4-39
December 2003

Understanding ATPGMessaging
You should now be in ATPG system mode.

7. Generate random and deterministic patterns for stuck-at-faults.

8. Observe and record the CPU time from the Fastscan ATPG Run Statistics
dialogue box:

9. Close the FastScan ATPG Run Statistics dialogue box.

Obtain a detailed report of the design’s statistics for the ATPG run and fill
in the following statistics:

Table 4-25. Report Statistics ATPG

Note

The FastScan ATPG Run Statistics dialogue box show the run time
for this particular run.

Table 4-26.

Fault Class # faults (coll.) # faults (total)

FU (full)

UO (unobserved)

DS (det_sim)

DI (det_imp)

PU (posdet_untestable)

UU (unused)

TI (tied)

BL (blocked)

RE (redundant)
Design-for-Test: Scan and ATPG Training4-40
December 2003

Understanding ATPGMessaging
Table 4-27. Report Coverage/Effectiveness ATPG

What are the number of patterns?

• Basic: No. of patterns ___________________

• RAM sequential: No. of patterns ___________________

• Clock Sequential: No. of patterns ___________________

Fault sampling is another method to attain a quick estimate of pattern
coverage for large circuits. Fault sampling creates a smaller pattern set for
simulation and detects problems earlier. Use the Set Fault Sampling
command to specify a percentage (between 0 and 100) of the total number
of faults you want to process.

This is the next step of the exercise.

AU (atpg_untestable)

Table 4-28.

Cov./Effect. # faults (coll.) # faults (total)

test_coverage

fault_coverage

atpg_effectiveness

test_patterns

simulated_patterns

CPU_time (secs)

Note

In simulation statistics, CPU time represents cumulative time not
the run time.

Table 4-26.

Fault Class # faults (coll.) # faults (total)
Design-for-Test: Scan and ATPG Training 4-41
December 2003

Understanding ATPGMessaging
10. Specify the fault sampling to 10%.

What command do you use? _____________________________________

11. Reset circuit status, and delete internal patterns.

ATPG > reset state

12. Generate random and deterministic patterns.

13. Study the results and compare them with the results from the last run.

a. Observe and record the CPU time from the Fastscan ATPG Run
Statistics dialogue box:

How does this compare with the first run?

b. Close the FastScan ATPG Run Statistics dialogue box.

c. Obtain a detailed report of the design’s simulation statistics and fill in
the following statistics:

Table 4-29. Report Statistics ATPG

Table 4-30.

Fault Class # faults (coll.) # faults (total)

FU (full)

UO (unobserved)

DS (det_sim)

DI (det_imp)

PU (posdet_untestable)

UU (unused)
Design-for-Test: Scan and ATPG Training4-42
December 2003

Understanding ATPGMessaging
Table 4-31. Report Coverage/Effectiveness ATPG

What are the number of patterns?

• Basic: No. of patterns ___________________

• RAM sequential: No. of patterns ___________________

• Clock Sequential: No. of patterns ___________________

i. How does the number of faults compare to the first run?

ii. How do the test & fault coverage figures compare to the first run?

TI (tied)

BL (blocked)

RE (redundant)

AU (atpg_untestable)

Table 4-32.

Cov./Effect. # faults (coll.) # faults (total)

test_coverage

fault_coverage

atpg_effectiveness

test_patterns

simulated_patterns

CPU_time (secs)

Table 4-30.

Fault Class # faults (coll.) # faults (total)
Design-for-Test: Scan and ATPG Training 4-43
December 2003

Understanding ATPGMessaging

iii. How do the number of test patterns compare to the first run?

FastScan reported the preceding analysis using fault sampling.

Limiting ATPG test coverage is used to attain a quick assessment of pattern
coverage. Using the Set ATPG Limits command specifies the ATPG
process limits at which the FastScan terminates ATPG. The -Test switch
and argument pair specifies the maximum percentage of test coverage.

You will now set ATPG limits to 50% coverage, and then determine test
coverage.

14. Reset Fastscan.

15. Set fault sampling percentage back to 100%.

SETUP> set fault sampling 100

16. Set ATPG test coverage percentage to 50%.

SETUP > set atpg limit -test 50

17. Go to ATPG mode.

18. Generate random and deterministic patterns for stuck-at-faults.(Typical
Settings)

19. Study the results and compare them with the first run.

a. Observe and record the CPU time from the Fastscan ATPG Run
Statistics dialogue box:

How does this compare with the first run? __________________________
Design-for-Test: Scan and ATPG Training4-44
December 2003

Understanding ATPGMessaging
b. Close the FastScan ATPG Run Statistics dialogue box.

c. Obtain a detailed report of the design’s simulation statistics and fill in
the following statistics:

Table 4-33. Report Statistics ATPG

Table 4-35. Report Coverage/Effectiveness ATPG

i. How does the number of faults compare to the first run?

Table 4-34.

Fault Class # faults (coll.) # faults (total)

FU (full)

UC (uncontrolled)

UO (unobserved)

DS (det_simulation)

DI (det_imp)

UU (unused)

TI (tied)

BL (blocked)

Table 4-36.

Cov./Effect. # faults (coll.) # faults (total)

test_coverage

fault_coverage

atpg_effectiveness

test_patterns

simulated_patterns

CPU_time (secs)
Design-for-Test: Scan and ATPG Training 4-45
December 2003

Understanding ATPGMessaging

ii. How do the test & fault coverage figures compare to the first run?

iii. How do the number of test patterns compare to the first run?

FastScan reported the preceding analysis from setting ATPG test
coverage limits.

In the final part of this exercise, you write a fault list from the
previous run, and load that external fault list into the current internal
fault list. (Remember the previous run was limited in coverage and
finished short. This acts as a representation of a fault list generated
from a set of existing patterns, enabling ‘top up’ to occur.)

You use the Reset AU Faults command to analyze and
reclassify previously untestable faults from the external fault list.
Then you generate patterns and observe the results.

The Load Faults command affects the current fault population
by either adding or removing faults from an external fault file. The
-Retain switch specifies for FastScan to retain the fault class of
each fault that is in the fault list. This switch ensures that no DS
faults are reclassified as AU faults.

20. First write an external fault list.

ATPG > write faults -all results/ external_flt.list \
-replace

(Remember that the -replace switch allows previous files of the same
name to be overwritten.)

21. Reset circuit status, and delete internal patterns.
Design-for-Test: Scan and ATPG Training4-46
December 2003

Understanding ATPGMessaging
ATPG> reset state

22. Load external faults and analyze the coverage given by these faults.

a. Load the external fault list.

 ATPG > load faults results/external_flt.list -retain

b. Use the report statistics command to fill in the following:

Table 4-37.

Table 4-39. Report Coverage/Effectiveness ATPG

Table 4-38.

Fault Class # faults (coll.) # faults (total)

FU (full)

UO (unobserved)

DS (det_sim)

DI (det_imp)

PU (posdet_untestable)

UU (unused)

TI (tied)

BL (blocked)

RE (redundant)

AU (atpg_untestable)

Table 4-40.

Cov./Effect. # faults (coll.) # faults (total)

test_coverage

fault_coverage
Design-for-Test: Scan and ATPG Training 4-47
December 2003

Understanding ATPGMessaging
c. What types of test patterns make up the complete set, and how many
patterns of each type are there?

• _________________________ No. of patterns ___________________

• _________________________ No. of patterns ___________________

• _________________________ No. of patterns ___________________

23. Reset any faults classified as atpg untestable to allow them to be
investigated and set the ATPG test coverage back to 100%. Analyze and
reclassify previously untestable faults.

ATPG> reset au faults

ATPG> set atpg limit -test off

Note that the second command does more that just reset the faults to 100%.

24. Generate patterns, this time using the command line. You only need one
word as all has been set up by previous commands.

ATPG> run

25. Study the results and compare them with the first run.

a. Observe and record the CPU time from the Fastscan ATPG Run
Statistics dialogue box:

atpg_effectiveness

test_patterns

simulated_patterns

CPU_time (secs)

Table 4-40.

Cov./Effect. # faults (coll.) # faults (total)
Design-for-Test: Scan and ATPG Training4-48
December 2003

Understanding ATPGMessaging
How does this compare with the first run? __________________________

b. Close the FastScan ATPG Run Statistics dialogue box.

c. Obtain a detailed report of the design’s simulation statistics and fill in
the following statistics:

Table 4-41.

Table 4-43. Report Coverage/Effectiveness ATPG

Table 4-42.

Fault Class # faults (coll.) # faults (total)

FU (full)

UO (unobserved)

DS (det_sim)

DI (det_imp)

PU (posdet_untestable)

UU (unused)

TI (tied)

BL (blocked)

RE (redundant)

AU (atpg_untestable)

Table 4-44.

Cov./Effect. # faults (coll.) # faults (total)

test_coverage

fault_coverage

atpg_effectiveness

test_patterns
Design-for-Test: Scan and ATPG Training 4-49
December 2003

Understanding ATPGMessaging
i. How does the number of FU faults compare to the first run?

ii. How do the test & fault coverage figures compare to the first run?

These results have been calculated from loading faults from an external
fault list into the current internal fault list.

26. Exit FastScan.

simulated_patterns

CPU_time (secs)

Table 4-44.

Cov./Effect. # faults (coll.) # faults (total)
Design-for-Test: Scan and ATPG Training4-50
December 2003

Understanding ATPGMessaging
Test Your Knowledge

1. What command do you use to ‘black box’ a module?

__

2. What are black boxes used for?

__

3. What command is used to set a contention check on a bus?

__

4. What pattern generation does FastScan begin with? Proceed to?

__

5. What command do you use when you want to report run statistics?

__

6. What command do you use to set simulation mode to RAM and clock
sequential?

__

7. What command do you use to report on the testability of various fault
classes?

__

8. What command do you use to analyze a fault in a list?

__
Design-for-Test: Scan and ATPG Training 4-51
December 2003

Understanding ATPGMessaging
Lab Summary

Now that you completed the Understanding ATPG Messaging lab, you should
know how to do the following:

• Read and analyze:

o Messages and warnings.

o DRC reporting.

o ATPG and test coverage reporting.

o Fault classifications.

• Determine the cause of undetected faults.

• Add no fault settings.

• Write an external fault list.

• Use common methodologies to attain a quick estimate of pattern
coverage.

Design-for-Test: Scan and ATPG Training4-52
December 2003

Module 5
Achieving High Test Coverage

Objectives

Upon completion of this module, you will be able to:

• Initiate an ATPG Run.

• Apply FastScan pattern types to relevant circuits.

• Apply pattern sequencing to achieve high test coverage.

• Use ModelSim to simulate and verify the following testbenches:

• Verilog.

• Serial and parallel.

• Chaintest.

• Pattern sample.

• Save patterns in three formats: ASCII, Verilog, and WGL.

• Read an ASCII pattern back into FastScan.
Design-for-Test: Scan and ATPG Training 5-1
December 2003

Achieving High Test Coverage
Module Topics

Notes:

5-2 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Module Topics

♦ This module addresses the following topics:
● Initial ATPG Run
● Pattern types to test through complex circuitry

– Non-scan logic
– RAM/ROM
– Small embedded memories

● Pattern outputs and inputs in FastScan flow
● Pattern verification
Design-for-Test: Scan and ATPG Training5-2
December 2003

Achieving High Test Coverage
Methodologies: Initial Run (Fault
Sampling)

Notes:

5-3 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Methodologies: Initial Run (Fault Sampling)

♦ Fault sampling provides the following:
● Quick estimate of coverage for a large circuit.
● Creates a smaller pattern set for simulation.

– Detects problems early.

♦ Use The SET FAult Sampling command to specify a
percentage (between 0 and 100) of the total faults you want
processed.

ATPG> SET FAult Sampling 1
ATPG> CREate PAtterns
ATPG> REPort STatistics
ATPG> SAVe PAtterns <FILENAME1.v> -Verilog
ATPG> SAVe PAtterns <FILENAME2.v> -Verilog -Serial -Sample 2
Design-for-Test: Scan and ATPG Training 5-3
December 2003

Administrator
Highlight

Achieving High Test Coverage
Methodologies: External Fault List

Notes:

5-4 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Methodologies: External Fault List

♦ Use the LOAd FAults command to place faults from a
previous run (from an external file) into the internal fault list

● FastScan creates additional patterns

ATPG> LOAd FAults <-FILENAME> -Retain
ATPG> REPort STatistics //verify initial coverage
ATPG> RESet AU Faults
ATPG> CREate PAtterns
ATPG> REPort STatistics //shows total coverage

Retains original faults
in the fault list

Enables FastScan to analyze
and reclassify previously
untestable faults
Design-for-Test: Scan and ATPG Training5-4
December 2003

Administrator
Highlight

Achieving High Test Coverage
Adding NOfaults

Notes:

5-5 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Adding NOfaults

♦ Use the ADD NOfault command to place nofault settings on
the following:

● Pin pathnames
● Pin names of

– specified instances
– modules

♦ Issue the ADD NOfaults command before using the
ADD FAults command

● Specified pin pathnames and pins names will not
become fault sites

● If design was previously flattened, using the add nofault
command will delete the flattened model

The tool loses all information added after flattening,
 such as ATPG functions and constraints
Design-for-Test: Scan and ATPG Training 5-5
December 2003

Achieving High Test Coverage
FastScan’s Test Pattern Types

Notes:

5-6 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

FastScan’s Test Pattern Types

♦ FastScan generates the following test pattern types:
● Basic Scan

– Used on full-scan design circuitry

● Clock Sequential
– Used to propagate values through non-scan latches and DFFs

with limited sequential depth

● Clock PO
– Used on circuitry where a clock signal passes through

combinational logic to a primary output

● RAM Sequential
– Used to propagate values through RAM

● Multi Load
– Used on RAM/ROM designs that contain non-scan cells

● MacroTest
– Used to test the cell array of small embedded memories
Design-for-Test: Scan and ATPG Training5-6
December 2003

Achieving High Test Coverage
Basic Scan Patterns

Notes:

5-7 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Basic Scan Patterns

♦ The following apply to basic scan patterns:
● Generated by default.
● Use appropriate test procedures to define control

and observation of scan cells.
● Independent from each other.
Design-for-Test: Scan and ATPG Training 5-7
December 2003

Achieving High Test Coverage
Basic Scan Patterns (Cont.)

Notes:

5-8 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Basic Scan Patterns (Cont.)

♦ Basic scan patterns contain the following events:
1. Load scan chain
2. Force primary inputs
3. Measure primary outputs
4. Pulse capture clock
5. Unload values from scan cells

– Load next pattern

 Capture
 Cycle

P
u

ls
e

ca
p

tu
re

 c
lo

ck

….

F
o

rc
e

P
I

M
ea

su
re

 P
O

SE

Load Scan Chain

CLK

PO

PIs X

X

Design-for-Test: Scan and ATPG Training5-8
December 2003

Achieving High Test Coverage
Basic Scan Pattern Operation

Notes:

5-9 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Basic Scan Pattern Operation

♦ Load Initialization procedure first
♦ Load values into the scan cells

1. Force SE to “1”
2. Force SI (scan chain input pin)
3. Pulse shift clock
4. Repeat steps 2 and 3 until all scan cells are loaded

LOAD

FORCE PI

MEASURE PO

PULSE CAPTURE
CLK.

1

A

SO

Y

D Q D Q D Q

B

SE
CLK

SI
1

1

1st Shift

011
CLK

SE

SI

1st Shift
Design-for-Test: Scan and ATPG Training 5-9
December 2003

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Achieving High Test Coverage
Basic Scan Pattern Operation (Cont.)

Notes:

5-10 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Basic Scan Pattern Operation (Cont.)
♦ Load values into the scan cells

1. Force SE to “1”.
2. Force SI.
3. Pulse shift clock.
4. Repeat steps 2 and 3 until all scan cells are

loaded.

1

A

SO

Y

D Q D Q D Q

B

SE
CLK

SI
1

1

2nd Shift

1
1

011

1st
Shift

2nd
Shift

CLK

SE

SI

LOAD

FORCE PI

MEASURE PO

PULSE CAPTURE
CLK.
Design-for-Test: Scan and ATPG Training5-10
December 2003

Administrator
Highlight

Achieving High Test Coverage
Basic Scan Pattern Operation (Cont.)

Notes:

5-11 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Basic Scan Pattern Operation (Cont.)
♦ Load values into the scan cells

1. Force SE to “1”.
2. Force SI.
3. Pulse shift clock.
4. Repeat steps 2 and 3 until all scan cells are

loaded.

1

A

SO

Y

D Q D Q D Q

B

SE
CLK

SI
0

0

3rd Shift

1
1

011 1

1

1st
Shift

2nd
Shift

SE

SI

3rd
 Shift

CLK

LOAD

FORCE PI

MEASURE PO

PULSE CAPTURE
CLK.

LOAD
Design-for-Test: Scan and ATPG Training 5-11
December 2003

Achieving High Test Coverage
Basic Scan Pattern Operation (Cont.)

Notes:

5-12 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Basic Scan Pattern Operation (Cont.)

♦ Force primary inputs
● Force normal primary inputs.
● Force SE to “0” (exits shift mode).

– Now all internal values can be predicted.

SE

0

A

SO

Y

D Q D Q D Q

B

SE
CLK

SI

0

0

1

1

1

1
1
1

1
1
1 1 1

A

B

F
o

rc
e

P
I

LOAD

FORCE PI

MEASURE PO

PULSE CAPTURE
CLK.
Design-for-Test: Scan and ATPG Training5-12
December 2003

Administrator
Highlight

Administrator
Highlight

Achieving High Test Coverage
Basic Scan Pattern Operation (Cont.)

Notes:

5-13 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Basic Scan Pattern Operation (Cont.)

♦ Measure primary outputs
● Measure “1” on Y.

0

A

SO

Y

D Q D Q D Q

B

SE
CLK

SI

0

SE

0

1

1

1

1
1
1

1
1
1 1 1

B

A

1

F
o

rc
e

P
I

M
ea

su
re

 P
O

Y

LOAD

FORCE PI

MEASURE PO

PULSE CAPTURE
CLK.
Design-for-Test: Scan and ATPG Training 5-13
December 2003

Achieving High Test Coverage
Basic Scan Pattern Operation (Cont.)

Notes:

5-14 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Basic Scan Pattern Operation (Cont.)

♦ Pulse Capture Clock
● Loads scan cells with functional inputs

 to observe circuit status.

SE
CLK

B

A

Y

F
o

rc
e

P
I

M
ea

su
re

 P
O

P
u

ls
e

ca
p

tu
re

C
L

K

Capture Cycle

0

A

SO

Y

D Q D Q D Q

B

SE
CLK

SI

1

0

1

1

1

1
1
1

1
1
1 1 1 1

LOAD

FORCE PI

MEASURE PO

PULSE CAPTURE
CLK.

Capture
Cycle
Design-for-Test: Scan and ATPG Training5-14
December 2003

Achieving High Test Coverage
Basic Scan Pattern Operation (Cont.)

Notes:

5-15 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Basic Scan Pattern Operation (Cont.)
♦ Unload the scan chain

● As new data is being shifted into the scan chain during
load, the previous internal circuit state is being shifted
out and measured at scan out (SO).

1

A

SO

Y

D Q D Q D Q

B

SE
CLK

SI
1

1
0

0
101 1

1

1st
Shift

2nd
Shift

SE

3rd
Shift

CLK

1 1 1

SI

Previous internal state
 of scan cells measured
 at scan out

LOAD

SO

Measure_sco

UNLOAD

LOAD/UNLOAD

FORCE PI

MEASURE PO

PULSE CAPTURE
CLK.

UNLOAD
Design-for-Test: Scan and ATPG Training 5-15
December 2003

Achieving High Test Coverage
Clock Primary Output Patterns

Notes:

5-16 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Clock Primary Output Patterns

♦ The following apply to Clock Primary Output (PO) patterns:
● FastScan generates clock PO patterns whenever it learns

that a clock connects to a primary output.
● Generated if there is a C8 violation.
● Allows clocks to be active during force and measure events.
● Some testers cannot control clocks using clock PO patterns.
● Use the following command to prevent clock PO generation.

– SETUP>SET PAttern Type -CLockpo OFf
Design-for-Test: Scan and ATPG Training5-16
December 2003

Administrator
Highlight

Administrator
Highlight

Achieving High Test Coverage
Clock Primary Output Patterns (Cont.)

Notes:

5-17 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Clock Primary Output Patterns (Cont.)

♦ Clock PO patterns contain the following events:
1. Load values into the scan chain.
2. Force values on all primary inputs, including clocks

connected to primary outputs.
3. Measure all primary outputs that are connected to scan clocks.

D

D Q D Q

LOGIC CLOUD

 . . .D D QQSI

SE

CLK

B

1

1 C

. . .

 . . .

M
ea

su
re

 P
O

….

F
o

rc
e

P
I

Load Scan Chain

CLK

SE

PIs

C

Capture Cycle

M
ea

su
re

 P
O

X

X

Design-for-Test: Scan and ATPG Training 5-17
December 2003

Administrator
Highlight

Achieving High Test Coverage
Clock Sequential Patterns

Notes:

5-18 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Clock Sequential Patterns

♦ The following apply to Clock Sequential patterns:
● Test through scan-based designs that contain limited non-scan

sequential logic or non-scan latches.
● FastScan reports non-scan logic as tie-x by default.
● To enable, set the sequential depth to a number greater than 1.

– SETUP>SET PAttern Type -SEquential 2

● (Clock sequential depth -1) defines the number of non-scan cells
connected in series that FastScan can test through.

– Do not set the depth greater than 5
Design-for-Test: Scan and ATPG Training5-18
December 2003

Administrator
Highlight

Administrator
Highlight

Achieving High Test Coverage
Clock Sequential Patterns (Cont.)

Notes:

5-19 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Clock Sequential Patterns (Cont.)

♦ Clock sequential patterns contain the following events:
1. Load scan chains
2. Apply clock sequential cycle

a. Force PIs
b. Pulse clock
c. Repeat a and b up to “N” times, where N is the sequential depth -1

3. Apply capture cycle
a. Force PIs
b. Measure PO
c. Pulse capture clock

4. Unload values from scan cells
Design-for-Test: Scan and ATPG Training 5-19
December 2003

Administrator
Highlight

Achieving High Test Coverage
Clock Sequential Patterns (Cont.)

Notes:

5-20 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Clock Sequential Patterns (Cont.)

A

SO

Y

D Q D Q D Q

B

SE
CLK

SI

Non-scan
logic

SETUP> SET PAttern Type -Sequential 2

Clock sequential depth

M
ea

su
re

 P
O

F
o

rc
e

P
I

C
ap

tu
re

 p
u

ls
e

C
lo

ck
 s

eq
u

en
ti

al
 p

u
ls

e

PO X

Load Scan Chain

CLK

SE

PIs X

F
o

rc
e

P
I

Clock Sequential
 Cycle

Capture Cycle
Design-for-Test: Scan and ATPG Training5-20
December 2003

Achieving High Test Coverage
Clock Sequential Pattern Operation

Notes:

5-21 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Clock Sequential Pattern Operation

♦ Load values into the scan cells

InitializedUnknown

A

SO

Y

D Q D Q D Q

B

SE
CLK

SI00
0 0X

Unknown

Load Scan Chain

CLK

SE

1st 2nd

Initialized

1

Design-for-Test: Scan and ATPG Training 5-21
December 2003

Achieving High Test Coverage
Clock Sequential Pattern Operation
(Cont.)

Notes:

5-22 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Clock Sequential Pattern Operation (Cont.)

♦ Apply clock sequential cycle
● a. Force primary inputs.

A

SO

Y

D Q D Q D Q

B

SE
CLK

SI

0 0X

0
1

0

1

Known input

C
lo

ck
 s

eq
u

en
ti

al
 p

u
ls

eLoad Scan Chain

CLK

SE

A X

F
o

rc
e

P
Is

B X

Clock Sequential
 Cycle

0

Design-for-Test: Scan and ATPG Training5-22
December 2003

Achieving High Test Coverage
Clock Sequential Pattern Operation
(Cont.)

Notes:

5-23 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Clock Sequential Pattern Operation (Cont.)

♦ Apply clock sequential cycle
● b. Pulse clock.
● c. Repeat a and b up to “N” times, where N

 is the sequential depth –1.

A

SO

Y

D Q D Q D Q

B

SE
CLK

SI

0 01

0
1

0

1

Clock sequential pulse
captures data into
non-scan cell

C
lo

ck
 s

eq
u

en
ti

al
 p

u
ls

eLoad Scan Chain

CLK

SE

A X

F
o

rc
e

P
Is

B X

Clock Sequential
 Cycle

0

Design-for-Test: Scan and ATPG Training 5-23
December 2003

Achieving High Test Coverage
Clock Sequential Pattern Operation
(Cont.)

Notes:

5-24 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Clock Sequential Pattern Operation (Cont.)

♦ Apply capture cycle
● a. Force PI.

M
ea

su
re

 P
O

F
o

rc
e

P
I

C
ap

tu
re

 p
u

ls
e

C
lo

ck
 s

eq
u

en
ti

al
 p

u
ls

e

PO X

Load Scan Chain

CLK

SE

PIs X

F
o

rc
e

P
I

Clock Sequential
 Cycle

Capture Cycle

A

SO

Y

D Q D Q D Q

B

SE
CLK

SI

0 01

1
1

1

1

1

1 1 1
1

0

Design-for-Test: Scan and ATPG Training5-24
December 2003

Achieving High Test Coverage
Clock Sequential Pattern Operation
(Cont.)

Notes:

5-25 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Clock Sequential Pattern Operation (Cont.)

♦ Apply capture cycle
● a. Force PI.
● b. Measure PO.

M
ea

su
re

 P
O

F
o

rc
e

P
I

C
ap

tu
re

 p
u

ls
e

C
lo

ck
 s

eq
u

en
ti

al
 p

u
ls

e

PO X

Load Scan Chain

CLK

SE

PIs X

F
o

rc
e

P
I

Clock Sequential
 Cycle

Capture Cycle

A

SO

Y

D Q D Q D Q

B

SE
CLK

SI

0 01

1
1

1

1

1

1 1 1
1

0

Design-for-Test: Scan and ATPG Training 5-25
December 2003

Achieving High Test Coverage
Clock Sequential Pattern Operation
(Cont.)

Notes:

5-26 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Clock Sequential Pattern Operation (Cont.)

♦ Apply capture cycle
● a. Force PI.
● b. Measure PO.
● c. Pulse capture clock.

A

SO

Y

D Q D Q D Q

B

SE
CLK

SI

1 11

1
1

1

1

1

1 1 1

M
ea

su
re

 P
O

F
o

rc
e

P
I

C
ap

tu
re

 p
u

ls
e

C
lo

ck
 s

eq
u

en
ti

al
 p

u
ls

eLoad Scan Chain

CLK

SE

F
o

rc
e

P
I

PO X

PIs X

Clock Sequential
 Cycle

Capture Cycle

1

0

Design-for-Test: Scan and ATPG Training5-26
December 2003

Achieving High Test Coverage
Clock Sequential Pattern Operation
(Cont.)

Notes:

5-27 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Clock Sequential Pattern Operation (Cont.)

♦ Unload values from scan cells
● As new data is being shifted into the scan chain during

load, the previous internal circuit state is being shifted
out and measured at scan out (SO).

Load Scan Chain

CLK

SE

1st 2nd

A

SO

Y

D Q D Q D Q

B

SE
CLK

SI

1 0X

1110

1

SI
Design-for-Test: Scan and ATPG Training 5-27
December 2003

Achieving High Test Coverage
RAM Sequential Patterns

Notes:

5-28 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

RAM Sequential Patterns

♦ The following applies to RAM Sequential patterns:
● Target faults associated with address and data lines not detected

by default patterns (pass-through)
● Automatically determine writes and reads to test logic around

memories
● Are single patterns with multiple loads

– Load events include: two address writes and a read
Design-for-Test: Scan and ATPG Training5-28
December 2003

Achieving High Test Coverage
RAM Sequential Patterns (Cont.)

Notes:

5-29 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

RAM Sequential Patterns (Cont.)

♦ Clock sequential patterns contain the following events:
1. Write to 1st address

a. Load scan cells
b. Force primary inputs
c. Pulse write line(s)

2. Write to 2nd address
– Repeat steps a through c for a different address

3. Read 1st address
– Load scan cells
– Force primary inputs
– Pulse read lines

4. Capture read values
– Load scan cells
– Force primary inputs
– Measure primary outputs
– Pulse capture clock

5. Unload values from scan cells
Design-for-Test: Scan and ATPG Training 5-29
December 2003

Achieving High Test Coverage
RAM Sequential Patterns (Cont.)

Notes:

5-30 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

RAM Sequential Patterns (Cont.)

♦ Do the following to generate RAM sequential patterns

RAMCLK
Scan_In
CLK

RAM

ADDR[0]

D_IN[1]

ADDR[1]

D_IN[0]

RE

CLK

WE

D Q

DQ
D_OUT[0]
D_OUT[1]S-a- 0

IN1

X
U1

SETUP>ADD CLks 0 CLK
SETUP>ADD WRite Con 0 RAMCLK
SETUP>ADD REad Con 0 RAMCLK
// or use ANAlyze COntrol Signals - Auto
.
.
.
ATPG>SET PAttern Type -RAM_sequential

Targets for RAM_
sequential patterns

Targets for RAM_
sequential patterns

Scan_Out
Design-for-Test: Scan and ATPG Training5-30
December 2003

Achieving High Test Coverage
RAM Sequential Patterns (Cont.)

Notes:

5-31 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

RAM Sequential Patterns (Cont.)

♦ RAM must be stable during LOAD/UNLOAD events.
♦ If the scan clock is used for RAM, read enable (RE)

and write enable (WE) must be off during shift.

RAMCLK

CLK
Scan_In

RAM

ADDR[0]

D_IN[1]

ADDR[1]

D_IN[0]

RE

CLK

WE

D Q

D Q
D_OUT[0]
D_OUT[1]

IN1

U1

SE

Scan_Out

Inserted test logic
holds WE and RE off
 during shift
Design-for-Test: Scan and ATPG Training 5-31
December 2003

Achieving High Test Coverage
RAM Sequential Patterns Example: To
Test For Stuck-At-0 at the Output of U1

Notes:

5-32 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

RAM Sequential Patterns Example: To Test For Stuck-At-0
at the Output of U1

♦ Do the following to test for S-a-0
● Write data to 1 st address.
 ADDR [0] = 1
 ADDR [1] = 1

– Data In = 00
– Address = 11

● Write different data to 2 nd address.
ADDR [0] = 1

 ADDR [1] = 0 (assume S-a-0)
– Data In = 11
– Address = 01

● Read 1st address.
● Capture read values.

– Correct captured data will read 00
– If U1 is S-a-0, captured data

will read 11

RAMCLK

CLK

RAM

ADDR[0]

D_IN[1]

ADDR[1]

D_IN[0]

RE

CLK

WE

D Q

DQ
D_OUT[0]
D_OUT[1]S-a- 0

IN1

X
U1

Scan_In

Scan_Out
Design-for-Test: Scan and ATPG Training5-32
December 2003

Achieving High Test Coverage
RAM Sequential Pattern Operation

Notes:

5-33 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

RAM Sequential Pattern Operation

♦ Write to 1st Address
a. Load scan chain
b. Force PI
c. Pulse write lines

RAMCLK

CLK

RAM

ADDR[0]

D_IN[1]

ADDR[1]

D_IN[0]

RE

CLK

WE

D Q

DQ
D_OUT[0]
D_OUT[1]S-a-0

IN1

X

1

1

1

1

0

X

X

1

1

0

0

1

Load Scan Chain

F
o

rc
e

P
I

P
u

ls
e

w
ri

te

Address = 11 Data = 00

0

CLK

SE
SI X

X

RAM CLK

X

IN1

U1

Scan_In

Scan_Out
Design-for-Test: Scan and ATPG Training 5-33
December 2003

Achieving High Test Coverage
RAM Sequential Pattern Operation
(Cont.)

Notes:

5-34 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

RAM Sequential Pattern Operation (Cont.)

♦ Write to 2nd address
a. Load scan chain
b. Force PI
c. Pulse write lines

RAMCLK

CLK

RAM

ADDR[0]

D_IN[1]

ADDR[1]

D_IN[0]

RE

CLK

WE

DQ

DQ
D_OUT[0]
D_OUT[1]S-a-0

IN1

X

1

0

0

0

0

X

X

1

0

1

1

1

P
u

ls
e

w
ri

te

IN1

RAM
CLK

CLK

SE
SI

Load Scan Chain

Write to 1st address

X

X

X

F
o

rc
e

P
I

Write to 2 nd address

0

U1

Scan_Out

Scan_In
Design-for-Test: Scan and ATPG Training5-34
December 2003

Achieving High Test Coverage
RAM Sequential Pattern Operation
(Cont.)

Notes:

5-35 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

RAM Sequential Pattern Operation (Cont.)

♦ Read 1st address
a. Load scan chain
b. Force PI
c. Pulse read lines

RAMCLK

CLK

RAM

ADDR[0]

D_IN[1]

ADDR[1]

D_IN[0]

RE

CLK

WE

DQ

DQ
D_OUT[0]
D_OUT[1]S-a-0

IN1

X

1

1

x

x

1

X

X

1

1

x

x

0

IN1

RAM
CLK

CLK

SE
SI

Load Scan Chain

Write to 1st address Write to 2nd address

Load Scan Chain

1

X

X

X

F
o

rc
e

P
I

Read to 1 st address

X

P
u

ls
e

re
adA “1” causes

RE =1
WE =0

Data is now valid
at memory output

0

0

U1

Scan_In

Scan_Out
Design-for-Test: Scan and ATPG Training 5-35
December 2003

Achieving High Test Coverage
RAM Sequential Pattern Operation
(Cont.)

Notes:

5-36 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

RAM Sequential Pattern Operation (Cont.)

♦ Capture read values
 a. Load scan cells
 b. Force primary inputs
 c. Measure primary outputs
 d. Pulse capture clock

RAMCLK

CLK

RAM

ADDR[0]

D_IN[1]

ADDR[1]

D_IN[0]

RE

CLK

WE

DQ

DQ
D_OUT[0]
D_OUT[1]S-a-0

IN1

X

x

x

x

x

x

x

x

x

x

x

0

0

0

0

IN1

RAM
CLK

CLK

SE
SI

Load Scan Chain

Write to 1st address Read 1st address

Load Scan Chain

Write to 2nd address

Load Scan Chain

X

X

X

F
o

rc
e

P
I

Capture read values

X X X X

PO X

M
ea

su
re

 P
O

P
u

ls
e

ca
p

tu
re

cl
o

ck

U1

X

Scan_Out

Scan_In
Design-for-Test: Scan and ATPG Training5-36
December 2003

Achieving High Test Coverage
Multi Load Patterns

Notes:

5-37 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Multi Load Patterns

♦ The following apply to Multi load patterns:
● Tests through RAM/ROM and sequential logic that contain

non-scan cells.
● Clock sequential patterns are generated to load scan chains and

non-scan cells without disturbing the logic state of the non-scan
cells.

● Optionally, writes and reads to test logic around memories.
● Use the following commands to generate multi load patterns.

SETUP> SET PAttern Type -MULtiple_load ON -Sequential 2
Design-for-Test: Scan and ATPG Training 5-37
December 2003

Achieving High Test Coverage
Multi Load Patterns (Cont.)

Notes:

5-38 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Multi Load Patterns (Cont.)

♦ Multi load patterns contain the following events:
1. Load scan chains (optional after first time)
2. Force PIs
3. Pulse sequential clock/write
4. Repeat steps 1-3 and/or 2-3 up to “1 . . .N” times
5. Apply capture cycle
 a. Force PI
 b. Measure PO
 c. Pulse clock
6. Unload scan chains
Design-for-Test: Scan and ATPG Training5-38
December 2003

Achieving High Test Coverage
Multi Load Patterns Example

Notes:

5-39 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Multi Load Patterns Example

♦ This design requires the
following multi load events:

1. Load scan chain
2. Load non-scan cell

a. Pulse non-scan clock (CLK1)

3. Load scan chain
4. Perform a write

a. Pulse RAMCLK

5. Load scan chain
6. Load non-scan cell with next

value and perform a write
a. Pulse CLK2 and RAMCLK

7. Load scan chain
8. Perform a read

a. Pulse RAMCLK

9. Capture data into scan cells
a. Pulse CLK1

10. Unload scan chains

RAMCLK

CLK2

RAM

ADDR[0]

D_IN[1]

ADDR[1]

D_IN[0]

RE

CLK

WE

D Q

DQ
D_OUT[0]
D_OUT[1]

IN1

U1

CLK1 S-a-0

Non-scan logic

Scan_In

Scan_Out
Design-for-Test: Scan and ATPG Training 5-39
December 2003

Administrator
Highlight

Achieving High Test Coverage
Multi Load Patterns Example (Cont.)

Notes:

5-40 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Multi Load Patterns Example (Cont.)

RAMCLK

CLK1

RAM

ADDR[0]

D_IN[1]

ADDR[1]

D_IN[0]

RE

CLK

WE

DQ

DQ
D_OUT[0]
D_OUT[1]

IN1

U1

CLK2 S-a-0

CLK1

SE

RAM CLK

CLK2

...

Load Load Load Load Load UnloadClock
seq

Capture

Write Write Read

Scan_Out

Scan_In

Clock
seq

Necessary if the non-scan
logic uses the same clock

as the scan chain
Design-for-Test: Scan and ATPG Training5-40
December 2003

Achieving High Test Coverage
MacroTest Patterns

Notes:

5-41 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

MacroTest Patterns

● Is a utility that helps automate the testing of embedded logic and
memories (macros) by automatically translating user-defined
patterns for the macros into scan patterns

● User defines the pattern file and the instance to apply them to
● No extra logic required
● No performance impact
Design-for-Test: Scan and ATPG Training 5-41
December 2003

Administrator
Highlight

Achieving High Test Coverage
MacroTest

Notes:

5-42 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

MacroTest

ATPG>macrotest <instance> <pattern-file>

Reproduced pattern input sequence
is applied to the macro’s inputs
 through the logic.

Converted patterns ensure that the macro’s
output sequence is as specified
in user-defined patterns.

010001
01110101
01000010
10011100
10111000
11110011

MacroLogic Logic

FastScan MacroTest
Scan Patterns Scan Patterns

1

0

1

1

1

1

10

0

0

0

1

0

0

1

1
1

1

1
1
1

1

0
0

0

0

0
0

0

MacroTest converts these
cycle-based patterns into
 scan-based patterns.

MacroTest Vectors
(user defined)
Design-for-Test: Scan and ATPG Training5-42
December 2003

Achieving High Test Coverage
Memory BIST

Notes:

5-43 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Memory BIST

♦ The following applies to Memory BIST patterns:
● Places pattern generation and analysis in the chip
● Often includes memory bypass logic to simplify ATPG

Memory
BIST

Controller

Comparator

LOGIC

LOGIC

XOR

ADDR

DATA_IN

Control
DATA_OUT

Bypass

RAM

Fail

Done
Design-for-Test: Scan and ATPG Training 5-43
December 2003

Achieving High Test Coverage
Test Pattern Type Summary

Notes:

5-44 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Test Pattern Type Summary

CIRCUITRY PATTERN TYPES

FULL SCAN

RAMs/ROMs

SHAWDOW LOGIC

BLACK BOXES

BLACK BOX
SHAWDOW LOGIC

NONSCAN
CIRCUITRY

SPECIAL (C8/C9)

NONSCAN
LATCHES

RAM/ROM

BASIC CLOCK
SEQ

MULTI
LOAD

RAM
SEQ

CLOCK
PO

MacroTest MBIST
Design-for-Test: Scan and ATPG Training5-44
December 2003

Administrator
Highlight

Achieving High Test Coverage
Saving Patterns

Notes:

5-45 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Saving Patterns

♦ Save ATPG patterns in the following formats:
● Reuse, debugging, and diagnostics

– ASCII ATPG >SAVe PAtterns <Filename> -Ascii

– Binary ATPG >SAVe PAtterns <Filename> -BInary

– These are the only pattern formats that can be read
back into FastScan

● For time-based verification
– Verilog ATPG >SAVe PAtterns <Filename> -Verilog

– VHDL ATPG >SAVe PAtterns <Filename> -VHdl

– Allows user to independently verify test patterns
 with circuit timing

● Manufacturing test (ATE)
– WGL ATPG >SAVe PAtterns <Filename> -Wgl

– STIL ATPG >SAVe PAtterns <Filename> -STil

– TI-TDL ATPG >SAVe PAtterns <Filename> -TItdl

– . . .
♦ Use .gz or .Z filename extension to save compressed files

Patterns

 Setup

Configuration

Generate
 Patterns

Save Results

Design Rule
Checking

FastScan
Design-for-Test: Scan and ATPG Training 5-45
December 2003

Achieving High Test Coverage
Reuse, Debugging, and Diagnostics

Notes:

5-46 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Reuse, Debugging, and Diagnostics

♦ FastScan can write out a subset of patterns in any format.
♦ External patterns can be read back into FastScan...

● for debugging (timing checks).
● and reuse (format translation).

♦ Failing pattern data from the tester can be read back into
FastScan to determine which set of faults match actual
failures.
Design-for-Test: Scan and ATPG Training5-46
December 2003

Achieving High Test Coverage
Reuse, Debugging, and Diagnostics:
ASCII and Binary Formats

Notes:

5-47 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Reuse, Debugging, and Diagnostics: ASCII and Binary
Formats

♦ ASCII is the default pattern format.
● Only format other than binary that can be read back

into FastScan.
● Does not contain timing information.
● Fully commented and readable.

– Test procedures
– Scan test procedures
– Scan memory elements
– Test coverage statistics

♦ Binary format contains the same information as ASCII but is in
a condensed form.

● Used for archival purposes for large designs.
Design-for-Test: Scan and ATPG Training 5-47
December 2003

Achieving High Test Coverage
Reuse, Debugging, and Diagnostics:
Reading ASCII Files Back into FastScan

Notes:

5-48 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Reuse, Debugging, and Diagnostics: Reading ASCII Files
Back into FastScan

♦ Do the following to read ASCII files back into FastScan
ATPG>SAVe PAtterns <testpat.ascii>

.

.

.

// Read existing patterns
ATPG> SET PAttern Source External <testpat.ascii>

ATPG> DIAgnose FAilure <failurefile.txt>

♦ Use .gz or .Z filename extension to automatically read
compressed file formats
Design-for-Test: Scan and ATPG Training5-48
December 2003

Achieving High Test Coverage
Time-Based Verification

Notes:

5-49 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Time-Based Verification

♦ ATPG is event-based.
♦ Simulation using a time-based simulator validates patterns

 with actual timing.
♦ By default, FastScan writes events with 10 ns separation.
♦ User enters procedure file timing information based on circuit

timing requirements and tester specifications.
Design-for-Test: Scan and ATPG Training 5-49
December 2003

Achieving High Test Coverage
Time-Based Verification (Cont.)

Notes:

5-50 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Time-Based Verification (Cont.)

♦ Do the following to enter procedure file timing information:
SETUP>ADD SCan Groups grp1 master.testprog
...
//timing in master.testproc
ATPG> SAVe PAtterns <testpat1.v> -Verilog -Parallel

//timing in new.testproc
ATPG> SAVe PAtterns <testpat2.v> -Verilog -Parallel \

 -Procfile <new.testproc>
Design-for-Test: Scan and ATPG Training5-50
December 2003

Achieving High Test Coverage
Verification of Pattern Formats

Notes:

5-51 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Verification of Pattern Formats

♦ Scan patterns and chain test
● By default, test patterns contain a chain integrity test in addition to

the ATPG patterns.
● Chain test shifts a repeated data pattern through the scan chains.
● Chain test detects problems in the shift path.

♦ Parallel and serial patterns
● Serial patterns behave as if applied by the tester

(one clock cycle for each shift).
● Parallel pattern values are directly applied to scan cell inputs to

speed up simulation (one clock cycle for all shifts).
● Verify all patterns in parallel format and a few in serial.

ATPG> SAVe PAtterns <testpat_p.v> -Verilog -Parallel

ATPG> SAVe PAtterns <testpat_s.v> -Verilog -Serial -Sample 2
Design-for-Test: Scan and ATPG Training 5-51
December 2003

Achieving High Test Coverage
Manufacturing Test

Notes:

5-52 • Design-for-Test: Scan and ATPG:
Achieving High Test Coverage

Copyright © 2003 Mentor Graphics Corporation

Manufacturing Test

♦ Many testers have special pattern formats.
♦ FastScan can save patterns for ATE in specific formats and

industry standard formats.
● WGL
● STIL
● TI-TDL

.

.

.

♦ User defined pattern timing in the procedure file is based on
circuit timing and tester specifications.
Design-for-Test: Scan and ATPG Training5-52
December 2003

Achieving High Test Coverage
Lab: Achieving High Test Coverage

Objectives

• Apply FastScan pattern types to relevant circuits.

• Apply pattern sequencing to achieve high test coverage.

• Save patterns in three formats: ASCII, Verilog, and WGL.

• Save parallel patterns.

• Save serial sample patterns.

• Save chaintest patterns.

• Use ModelSim to simulate and verify the following testbenches:

o Verilog.

• Parallel patterns.

• Serial sample patterns.

o Chaintest patterns.

• Read an ASCII pattern file into FastScan, create new patterns and save the
new patterns in TI-TDL format.

List of Exercises

• Exercise 11: Creating and Saving Patterns in Different Formats

• Exercise 12: Verifying Patterns Using ModelSim

• Exercise 13: Reading ASCII files into FastScan (Optional)
Design-for-Test: Scan and ATPG Training 5-53
December 2003

Achieving High Test Coverage
Getting Started

1. Change to the $ATPGNW/lab 5/exercise_11 directory.

shell> cd $ATPGNW/lab5/exercise_11

Exercise 11: Creating and Saving Patterns in Different
 Formats

In this exercise, you invoke FastScan on a design and apply FastScan pattern types
to relevant circuits.Then you apply pattern sequencing to achieve higher test
coverage. Finally, you create and save test patterns in the following formats:

• For reuse, debugging, and diagnostics

o ASCII

• For time-based verification

o Verilog

• Parallel

• Serial

• Chaintest

• For manufacturing test

o WGL

1. Invoke FastScan on the following circuit:

Design: gate_2001_scan.v

Note

Remember that for the exercises in this lab you use the libraries
found in the libraries_5_to_6 directory.
Design-for-Test: Scan and ATPG Training5-54
December 2003

Achieving High Test Coverage
Library: adk.atpg

Log file: results/ex_11.log

2. The initial setup commands for this design are in a dofile. Run the file
gate_2001_scan.dofile.

3. Study the Session Transcript window to see what commands have been
executed by the dofile:

What actions do the commands perform?

__

__

__

__

This circuit design contains the following:

• Non-scan elements

• Full scan elements (scan chains)

• RAMs

By default, FastScan generates basic scan patterns, which produce high test
coverage on full-scan circuitry. Typically, more complex designs require
the application of specific pattern types to achieve higher overall test
coverage.

You achieve higher test coverage by using patterns designed to simulate
faults for specific circuitry. Also, higher test coverage is achieved by
applying the appropriate pattern type in the proper sequence.

Use the following pattern sequence to achieve higher test coverage:

• Basic— used on full-scan design circuitry.
Design-for-Test: Scan and ATPG Training 5-55
December 2003

Achieving High Test Coverage
• Clock PO— used on circuitry where a clock signal passes through
combinational logic to a primary output.

• Clock sequential— propagates values through non-scan latches.

• Multi-load— used on RAM/ROM designs that contain non-scan cells.

• RAM sequential— used to propagate values through RAM.

4. Enable FastScan to generate clock sequential patterns, with up to two
unscanned d-types between scanned ones.

SETUP> set simulation mode combinational -depth 3

This enables FastScan to test through scan-based designs that contain
limited non-scan sequential logic or non-scan latches.

(Clock sequential depth - 1) defines the number of non-scan cells connected
in series that FastScan can test through (two in this case).

5. Enable FastScan to generate multi-load patterns.

SETUP> set multiple load on

Clock sequential patterns are generated to load scan chains and set desired
values in non-scan cells without disturbing any scan or pertinent non-scan
logic.

6. Go to ATPG mode.

a. Click Done with Setup in the FastScan Control Panel pane.

b. Click on the Pattern Generation button. When the DRC Warning
Occurred dialogue box opens, click No. Go straight into ATPG mode.

Note

Remember, the recommendation is that you should not have a depth
greater than 5. (4 unscanned d-types)
Design-for-Test: Scan and ATPG Training5-56
December 2003

Achieving High Test Coverage
c. Observe the warning messages in the session transcript area.

What types of DRC warning messages were identified, and what do
they mean?

Type: ___________error:____________________________________

Type: ___________error:____________________________________

Type: ___________error:____________________________________

Type: ___________error:____________________________________

7. Select Typical settings for the ATPG run (stuck-at-fault model for all
circuit fault locations).

8. Generate random and deterministic patterns.

a. Notice in the Session Transcript window that FastScan begins with
random pattern generation. FastScan identifies and stores only those
patterns that detect faults. Random pattern generation never identifies
redundant faults, nor faults with low probability of detection. Capture
clocks are tested until exhausted.

b. Observe in the Session Transcript window that FastScan uses
deterministic test pattern generation when it creates a test pattern
intended to detect a given fault. The procedure is to pick a fault from

Note

It is possible to use the Set Random Patterns command to
change the number of random patterns generated. This
changes the test coverage percentage using random patterns.
The default integer value is 1024.

SETUP> set random patterns integer

 You also can turn random pattern generation off.

SETUP> set random atpg off

We will not be using these commands in this exercise.
Design-for-Test: Scan and ATPG Training 5-57
December 2003

Achieving High Test Coverage
the fault list, create a pattern to detect the fault, fault simulate the
pattern, and check to make sure the pattern detects the fault.

9. Fill in the following statistics from the ATPG Run Statistics dialogue box
and the report statistics command:

Table 5-1. Test Pattern Generation Results

Table 5-3. Report Statistics ATPG

Table 5-2.

Type of
Pattern

No. of
Effective
Patterns

No. of
Sim’d
Patterns

No. of
detected

No. of
Aborted

No. of
AU

No.
Redun.

Table 5-4.

Fault Class # faults (coll.) # faults (total)

FU (full)

UC (uncontrolled)

UO (unobserved)

DS (det_sim)

DI (det_imp)

PU (posdet_untestable)

PT (posdet_testable)

UU (unused)

TI (tied)

RE (redundant)
Design-for-Test: Scan and ATPG Training5-58
December 2003

Achieving High Test Coverage
Table 5-5. Report Coverage/Effectiveness ATPG

a. How many faults were undetected? ____________________________

b. How many faults were tested unsuccessfully? ____________________

10. Display a fault analysis summary using the report testability
data command.

How many faults are connected to RAMs? _________________________

How many faults are connected from RAMs? _______________________

The Report Testability Data command identifies and displays any circuitry
connections that may cause test coverage problems. FastScan reports a

AU (atpg_untestable)

Table 5-6.

Cov./Effect. # faults (coll.) # faults (total)

test_coverage

fault_coverage

atpg_effectiveness

test_patterns

basic_patterns

clock_po_patterns

clock_seq_patterns

mult_load_patterns

simulated_patterns

CPU_time (secs)

Table 5-4.

Fault Class # faults (coll.) # faults (total)
Design-for-Test: Scan and ATPG Training 5-59
December 2003

Achieving High Test Coverage
large number of faults connected to RAM. This indicates that you need to
generate RAM sequential patterns to propagate values through the RAM
circuitry.

11. Enable FastScan to generate RAM sequential patterns, with up to two
unscanned d-types between scanned ones.

What command do you use?

__

12. Generate ATPG patterns for RAM sequential. This adds to the patterns
already generated; it does not start from scratch.

ATPG> run

13. Fill in the following statistics from the ATPG Run Statistics dialogue box
and the report statistics command:

Table 5-7. Test Pattern Generation Results

Table 5-9. Report Statistics ATPG

Table 5-8.

Type of
Pattern

No. of
Effective
Patterns

No. of
Sim’d
Patterns

No. of
detected

No. of
Aborted

No. of
AU

No.
Redun.

Table 5-10.

Fault Class # faults (coll.) # faults (total)

FU (full)

UC (uncontrolled)
Design-for-Test: Scan and ATPG Training5-60
December 2003

Achieving High Test Coverage
Table 5-11. Report Coverage/Effectiveness ATPG

UO (unobserved)

DS (det_sim)

DI (det_imp)

PU (posdet_untestable)

PT (posdet_testable)

UU (unused)

TI (tied)

RE (redundant)

AU (atpg_untestable)

Table 5-12.

Cov./Effect. # faults (coll.) # faults (total)

test_coverage

fault_coverage

atpg_effectiveness

test_patterns

basic_patterns

clock_po_patterns

#ram_seq_patterns

clock_seq_patterns

mult_load_patterns

simulated_patterns

CPU_time (secs)

Table 5-10.

Fault Class # faults (coll.) # faults (total)
Design-for-Test: Scan and ATPG Training 5-61
December 2003

Achieving High Test Coverage
a. How many faults were undetected? ____________________________

b. How many faults were tested unsuccessfully? ____________________

14. Close the FastScan ATPG Run Statistics dialogue box.

You have created and increased patterns that achieve higher test coverage.
In the following steps, you will save these patterns in three formats: ASCII,
Verilog, and WGL.

15. Use the Save Patterns... button in the Button pane to save the patterns as an
ASCII file with the following characteristics:

File name: results/testpat.ascii

Pattern format: ASCII, with default ASCII options

Save Scan Cell Data in: Parallel

a. Overwrite any existing files of the same name.

b. Leave the default settings for the rest.

The ASCII patterns can be utilized for reuse, debugging, and diagnostics.
This is the default format that FastScan generates when you save patterns.
This format contains test pattern data in a text-based parallel format. This
format is the one of only two formats that can be read back into FastScan.

c. Select File > Open > Text File (Read-Only) to view the file you have
written.

16. Use the Save Patterns... button in the Button pane to save the patterns in
parallel Verilog format with the following characteristics:

File name: results/testpat_par.v

Pattern format: Verilog

Save Scan Cell Data in: Parallel
Design-for-Test: Scan and ATPG Training5-62
December 2003

Achieving High Test Coverage
Test to be Saved: Scan & Chain

a. Overwrite any existing files of the same name.

b. Leave the default settings for the rest.

The Verilog pattern file contains procedures to apply test patterns, compare
expected output with simulated output, and print out a report containing
information about failing comparisons. FastScan writes all patterns and
comparison functions into one main file (filename), while writing the
primary output names in another file (filename.po.name). Choosing parallel
loading of scan chains, enables FastScan to write the names of the scan
output pins of each scan subchain of each scan chain into separate files (for
example, filename.chain1.name). This allows time-based simulators to
report output pins that have discrepancies between expected and simulated
outputs.

c. Select File > Open > Text File (Read-Only) to view the file you have
written.

17. Use the Save Patterns... button in the Button pane to save the patterns in
serial Verilog format with the following characteristics:

File name: results/testpat_ser.v

Pattern format: Verilog

Save Scan Cell Data in: Serial

Test to be Saved: Scan & Chain

Number of Patterns to Sample Per Pattern Type: 5

a. Overwrite any existing files of the same name.

b. Leave the default settings for the rest.

By setting the number of patterns to sample per pattern type to five you
have reduced the CPU processing time.
Design-for-Test: Scan and ATPG Training 5-63
December 2003

Achieving High Test Coverage
c. How many patterns were actually sampled? ______________________

d. Select File > Open > Text File (Read-Only) to view the file you have
written.

18. Use the Save Patterns... button in the Button pane to save the patterns to
effect a chaintest only, in serial Verilog format with the following
characteristics:

File name: results/chaintest_ser.v

Pattern format: Verilog

Save Scan Cell Data in: Serial

Tests to be Saved: Chain Test

a. Overwrite any existing files of the same name.

b. Leave the default settings for the rest.

Chain test patterns check scan chain integrity.The chain test applies the
test_setup procedure, followed by the load_unload procedure for
loading scan chains, and the load_unload procedure (again) for
unloading scan chains. Each load_unload procedure in turn calls the
shift procedure. This operation typically loads a repeating pattern of
“0011” into the chains.

c. Select File > Open > Text File (Read-Only) to view the file you have
written.

19. Use the Save Patterns... button in the Button pane to save the patterns to
serial WGL format with the following characteristics:

File name: results/testpat_par.WGL

Pattern format: WGL

Save Scan Cell Data in: Parallel
Design-for-Test: Scan and ATPG Training5-64
December 2003

Achieving High Test Coverage
Tests to be Saved: Chain & Scan Test

a. Overwrite any existing files of the same name.

b. Leave the default settings for the rest.

The WGL format supports parallel loading of the scan cells.

c. Select File > Open > Text File (Read-Only) to view the file you have
written.

20. Exit FastScan.

Exercise 12: Verifying Patterns Using ModelSim

In this exercise, you verify the patterns you created in Exercise 11. You use
ModelSim to simulate and verify the following testbenches for time-based
verification using Verilog:

• Chaintest patterns

• Parallel patterns

• Serial sample patterns

Getting Started

1. You should be in the $ATPG/lab5/exercise_11/results directory.

shell> cd $ATPGNW/lab5/exercise_11/results

2. Compile the following files:
<testbench> <netlist> <verilog library>

shell> vlib work
Design-for-Test: Scan and ATPG Training 5-65
December 2003

Achieving High Test Coverage
shell> vlog testpat_ser.v ../gate_2001_scan.v -V adk.v

3. Open ModelSim.

shell> vsim

A Welcome to ModelSim window opens. Close it and proceed directly to
ModelSim.

4. Load the design and run the simulation:

a. In the Library tab, expand the work directory and double click on the
cpu_top_chaintest_ser_v_ctl block as shown:

Double clicking on the block loads it into the simulator.

Note

Use the “V” switch to improve the runtime.
Design-for-Test: Scan and ATPG Training5-66
December 2003

Achieving High Test Coverage
b. The testbench generated by FastScan contains all the stimulus required,
so you only need to run the simulation. Use the pulldown menu
Simulate> Run> Run -All, the Run All button or type run -all
at the VSIM> command line prompt to run the simulation from start to
finish.

ModelSim is checking for errors between the simulated and expected
pattern values.

This takes about 2 minutes to run.

c. Look at the Transcript window in ModelSim to determine the outcome
of simulation.

i. How many nanoseconds does the simulation run for? ___________

ii. Are there any errors? _____________

iii. How do you know this? _________________________________

 __

d. After checking all the messages in the ModelSim transcript, click Yes in
the Finish Vsim dialogue box.

ModelSim simulated and verified that your serial Verilog patterns do not
have simulation mismatch.

Note

If you would like to see what has been simulated, click No in the
finish Vsim dialogue box and select Simulate > Run > Restart to
restart the simulation. Open a Wave window and add the top level
signals to this window (add wave * at the command line
prompt), then do a run -all again.

Adding the Wave window is not necessary for this simulation as the
testbench does all the checking and the test out is sufficient enough
to say that it has passed.
Design-for-Test: Scan and ATPG Training 5-67
December 2003

Achieving High Test Coverage
5. Next you simulate and verify the parallel Verilog patterns. Remember that
this uses all the patterns, but does not shift them in and out of the scan
chain.

a. Compile the parallel testbench (remember that the netlist and library are
already compiled from the last run.)

What command do you use? ________________________________

b. Open ModelSim.

What command do you use? ________________________________

c. In the Library tab, expand the work library and double click on
cpu_top_testpat_par_v_ctl to load the parallel testbench into the
simulator.

d. The testbench generated by FastScan contains all the stimulus required,
so you only need to run the simulation. Use the pulldown menu
Simulate > Run > Run -All, the Run All button, or the command to
run the simulation from start to finish.

ModelSim is checking for errors between the simulated and expected
pattern values.

This may take 10-13 minutes, depending upon the operating system you
use.

e. Look at the Transcript window in ModelSim to determine the outcome
of simulation.

i. What test is done first? ___________________________________

ii. How many nanoseconds does the simulation run for? ___________

iii. Are there any errors? _____________

iv. How do you know this? _________________________________

 __
Design-for-Test: Scan and ATPG Training5-68
December 2003

Achieving High Test Coverage
f. After checking all the messages in the ModelSim transcript, click Yes in
the Finish Vsim dialogue box.

ModelSim simulated and verified that your sampled parallel Verilog
patterns do not have simulation mismatch.

6. Now you simulate and verify the serial Verilog patterns. Recall that the
number of patterns to sample per pattern was set to five. This gives a good
estimate of coverage, plus simulation and verification processing time is
greatly reduced (but it is still pretty high).

a. Compile the serial testbench (remember that the netlist and library are
already compiled from the last run.)

What command do you use? ________________________________

b. Open ModelSim.

c. In the Library tab, expand the work library and double click on
cpu_top_testpat_ser_v_ctl to load the parallel testbench into the
simulator.

d. Run the simulation.

e. ModelSim is checking for errors between the simulated and expected
pattern values.

This takes around 30 minutes to run.

f. Look at the Transcript window in ModelSim to determine the outcome
of simulation.

i. What test is done first? ___________________________________

ii. How many nanoseconds does the simulation run for? ___________

Note

The next part takes around a half an hour to simulate, so if you are
running out of time, you can leave the lab at Exercise 12. The
process is the same as the two previous simulations.
Design-for-Test: Scan and ATPG Training 5-69
December 2003

Achieving High Test Coverage
iii. Are there any errors? _____________

iv. How do you know this? _________________________________

__

g. After checking all the messages in the ModelSim transcript, click Yes in
the Finish Vsim dialogue box.

h. ModelSim simulated and verified that your serial Verilog patterns do
not have simulation mismatch.

Exercise 13: Reading ASCII files into FastScan
(Optional)

In this exercise, you invoke FastScan on a design and apply FastScan pattern
types. Then you read in an external ASCII pattern file into FastScan. Next you
generate patterns and observe the results. Finally, you save these patterns in a TI-
TDL format.

Getting Started

1. Change to the $ATPGNW/lab 5/exercise_13 directory.

shell> cd $ATPGNW/lab5/exercise_13

2. Invoke Fastscan.

Design: gate_2001_scan.v

Library: /libraries_5_to_6/adk.atpg

Log file: results/ex_13.log

You could invoke FastScan on the design straight from the shell prompt
and not use the Invocation dialogue box.

What command do you use? _________________________________
Design-for-Test: Scan and ATPG Training5-70
December 2003

Achieving High Test Coverage

3. Run a dofile.

a. Execute the file gate_2001_scan.dofile. (Use the Dofile... button in the
Button pane).

4. Study the Session Transcript window to see what commands have been
executed by the dofile:

What actions do the commands perform?

__

__

__

__

__

This design is same as in Exercise 11. It contains the following:

• Non-scan elements

• Full scan elements (scan chains)

• RAMs

You have already learned that in order to achieve higher test coverage,
FastScan must be enabled to generate specific pattern types to test specific
circuitry and apply them in the proper sequence. If you have questions
about FastScan patterns, refer to Exercise 11.

5. Enable FastScan to generate multi-load patterns and RAM sequential
patterns.

What two commands do you use to do this?
Design-for-Test: Scan and ATPG Training 5-71
December 2003

Achieving High Test Coverage
a. __

b. __

6. Go to ATPG mode, ignoring any DRC warning messages. You should now
be in ATPG system mode.

7. Read in an external ASCII file.

a. Click on the Pattern Source button in the graphics pane. When the Use
Typical Settings or Customize? dialogue box opens, select the
Customize button.

b. In the Setup Pattern Source dialogue window, click on External
Patterns From: and browse to the file testpat.ascii.

c. Patterns Are in the Following Format: Click on ASCII.

d. Verify that Sequential is selected in the Pattern Set Creates/Contains
RAM Test Patterns That Are section.

e. Click OK.

You have read in an external ASCII file. This option enables you to use test
patterns created previously or perhaps use patterns created by another
ATPG test group.

8. Select fault model and add faults. Use the default values (fault type stuck,
and add all faults.

What commands are executed? (Session Transcript pane.)

__

__

9. Generate random and deterministic patterns for stuck-at faults.

a. Click on the Run button in the Button pane. The FastScan ATPG Run
Statistics dialogue box opens.
Design-for-Test: Scan and ATPG Training5-72
December 2003

Achieving High Test Coverage
10. Obtain a detailed report of the design’s simulation statistics and fill in the
following. Use all of the information and command used in previous
exercises to generate reports and statistics:

Table 5-13. Report Statistics ATPG

Table 5-15. Report Coverage/Effectiveness ATPG

Table 5-14.

Fault Class # faults (coll.) # faults (total)

FU (full)

UC (uncontrolled)

UO (unobserved)

DS (det_sim)

DI (det_imp)

PT (posdet_testable)

UU (unused)

TI (tied)

Table 5-16.

Cov./Effect. # faults (coll.) # faults (total)

test_coverage

fault_coverage

atpg_effectiveness

test_patterns

basic_patterns

ram_seq_patterns

clock_seq_patterns

mult_load_patterns
Design-for-Test: Scan and ATPG Training 5-73
December 2003

Achieving High Test Coverage
a. How many faults were undetected? ____________________________

11. Use the Save Patterns... button in the Button pane to save parallel TI-TDL
patterns with the following characteristics:

File name:results/testpat_par.ti.tdl

Pattern format: TITDL

Save Scan Cell Data in: Parallel

 Tests to be Saved: Chain & Scan Test

a. Overwrite any existing files of the same name.

b. Leave the default settings for the rest.

You have created parallel TI-TDL manufacturing test patterns. Data is
loaded into the scan cells in parallel. The TI-TDL ASIC vendor data
format is text based.

c. use File > Open > Text File (Read-Only) to look at the file you have
written.

12. Exit FastScan.

simulated_patterns

CPU_time (secs)

Table 5-16.

Cov./Effect. # faults (coll.) # faults (total)
Design-for-Test: Scan and ATPG Training5-74
December 2003

Achieving High Test Coverage
Test Your Knowledge

1. What pattern type tests through non-sequential logic or non-scan latches?

__

2. What command do you use to change the number of random patterns
generated?

__

3. What command is used to display a fault analysis summary?

__

4. What pattern format can be read back into FastScan?

__

5. What happens when you choose parallel loading of scan chains when
creating Verilog pattern files?

__

6. Why create chaintest patterns?

__

7. Why would you sample patterns?

__

8. What pattern formats are used by ATE?

__
Design-for-Test: Scan and ATPG Training 5-75
December 2003

Achieving High Test Coverage
Lab Summary

Now that you completed the achieving High Test Coverage lab, you should know
how to do the following:

• Apply FastScan pattern types to relevant circuits in the proper
sequence.

• Save patterns in the following formats: ASCII, Verilog, WGL,
 and TI-TDL.

• Save parallel, serial, and chaintest patterns.

• Use ModelSim to simulate and verify testbenches.

• Read an ASCII pattern file back into FastScan.

Design-for-Test: Scan and ATPG Training5-76
December 2003

Module 6
Creating High Quality Patterns at

Low Cost

Objectives

Upon completion of this module, you will be able to:

• Optimize patterns for quality and cost.

• Create patterns for At-speed ATPG.

• Create transition fault patterns.

• Create path delay patterns.

• Create IDDQ patterns.
Design-for-Test: Scan and ATPG Training 6-1
December 2003

Creating High Quality Patterns at Low Cost
Module Topics

Notes:

6-2 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

Module Topics

♦ This module addresses the following topics:
● Quality
● Cost
● Fault models
● At-speed ATPG
● Creating transition, path delay, and IDDQ patterns
● ATE characteristics
Design-for-Test: Scan and ATPG Training6-2
December 2003

Creating High Quality Patterns at Low Cost
Quality and Cost

Notes:

6-3 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

Quality and Cost

♦ The goal of test generation is to
create high quality test patterns
at low cost.

● Quality
– High quality test detects

manufacturing defects; therefore,
fewer defective parts shipped to
customers.

● Cost
– The time it takes to test one chip

has a major impact on
production costs.Pattern

volume
Tester
capacity
limit

≈≈≈≈

≈≈≈≈
Reload

EscapesEscapes

Coverage

Test time

Trend
Design-for-Test: Scan and ATPG Training 6-3
December 2003

Creating High Quality Patterns at Low Cost
Quality

Notes:

6-4 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

Quality

♦ To adequately test ICs for various
types of possible defects, use the
following fault models:

● Stuck-at.
● Path delay.
● Transition.
● IDDQ.

♦ Using a combination of fault
models ensures high test quality.

● Poor test quality can adversely
affect production schedules and
costs.

Functional
Defects

IDDQ
Defects

At-Speed
Defects

circuitry opens
circuitry shorts

CMOS stuck-on
CMOS stuck-open

bridging

slow transistors
resistive bridges
Design-for-Test: Scan and ATPG Training6-4
December 2003

Creating High Quality Patterns at Low Cost
Cost

Notes:

6-5 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

Cost

♦ ATE (tester) time is a recurring cost for each chip.
● Scan test application time is equal to the pattern count

times the length of the longest scan chain.
● Reload is extremely slow but may be necessary if pattern

count exceeds tester memory.
● Patterns are often truncated to avoid reloads but pattern

quality is often impacted.

♦ The following factors affect tester costs:
● Number of scan channels.
● Amount of required memory.
● Number of clocks.
● Required test frequency.
Design-for-Test: Scan and ATPG Training 6-5
December 2003

Creating High Quality Patterns at Low Cost
At-Speed ATPG

Notes:

6-6 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

At-Speed ATPG

♦ Checks the amount of time it takes for a device to change
logic states

♦ Detects timing failures that occur when a circuit operates
correctly at a slow clock rate, but then fails when run at
clock speed
Design-for-Test: Scan and ATPG Training6-6
December 2003

Creating High Quality Patterns at Low Cost
At-Speed ATPG (Cont.)

Notes:

6-7 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

At-Speed ATPG (Cont.)

♦ Traditional functional testing for At-speed defects
● Long development time.
● Required detailed circuit knowledge
● Difficult to fault grade.

♦ At-speed ATPG
● Patterns are automatically generated.
● Simpler.
● Easier to evaluate.

– Apply At-speed test with slow shift.
Design-for-Test: Scan and ATPG Training 6-7
December 2003

Creating High Quality Patterns at Low Cost
At-Speed ATPG and the Transition Fault
Model

Notes:

6-8 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

At-Speed ATPG and the Transition Fault Model

♦ The transition fault model:
● Detects gross pin-to-pin delay effects
● Requires no timing information
● Paths are randomly chosen
● Behaves as a stuck-at fault for a brief period of time

♦ Includes two fault models:
● Slow-to-rise

– Models a pin slow to change from 0 to 1

● Slow-to-fall
– Models a pin that is slow to change from 1 to 0

♦ Requires two test patterns for detection:
● Initialization vector

– Places initial transition value at the point of the fault

● Transition vector
– Places final transition value at the point of the fault
Design-for-Test: Scan and ATPG Training6-8
December 2003

Creating High Quality Patterns at Low Cost
At-Speed ATPG and the Path Delay Fault
Model

Notes:

6-9 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

At-Speed ATPG and the Path Delay Fault Model

♦ Models defects in circuit paths
♦ Associated with testing AC performance of critical paths
♦ Path is defined by a timing analysis tool
♦ Identified by path topology

● Launch point: PI or state element
● Capture point: PO or state element
Design-for-Test: Scan and ATPG Training 6-9
December 2003

Creating High Quality Patterns at Low Cost
The Path Delay Model

Notes:

6-10 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

The Path Delay Model

Goal = test the path for a 1 to 0 transition

1 →→→→ 0 1 →→→→ 0

FastScan will automatically determine appropriate values
to load scan chain and perform test.

Test Path

Scan chains
Design-for-Test: Scan and ATPG Training6-10
December 2003

Creating High Quality Patterns at Low Cost
The Path Delay Model (Cont.)

Notes:

6-11 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

The Path Delay Model (Cont.)

Define the initial path values

1 1

1

1

Design-for-Test: Scan and ATPG Training 6-11
December 2003

Creating High Quality Patterns at Low Cost
The Path Delay Model (Cont.)

Notes:

6-12 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

The Path Delay Model (Cont.)

Define other values to sensitize path

1 1
1

1

11
Design-for-Test: Scan and ATPG Training6-12
December 2003

Creating High Quality Patterns at Low Cost
The Path Delay Model (Cont.)

Notes:

6-13 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

The Path Delay Model (Cont.)

Define other values to sensitize path

1 1
1

1

11
Design-for-Test: Scan and ATPG Training 6-13
December 2003

Creating High Quality Patterns at Low Cost
The Path Delay Model (Cont.)

Notes:

6-14 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

The Path Delay Model (Cont.)

Pulse clock in functional mode to cause launch

1 →→→→ 0

1 →→→→ 1

1

0

0 →→→→1

0

1

Causes the values to propagate through the path

1 →→→→ 0
Design-for-Test: Scan and ATPG Training6-14
December 2003

Creating High Quality Patterns at Low Cost
The Path Delay Model (Cont.)

Notes:

6-15 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

The Path Delay Model (Cont.)

1 →→→→ 0

1 →→→→ 0

Pulse clock in functional mode to capture value
if transition propagated in time
Design-for-Test: Scan and ATPG Training 6-15
December 2003

Creating High Quality Patterns at Low Cost
Transition Fault Patterns

Notes:

6-16 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

Transition Fault Patterns

♦ FastScan uses the following transition fault patterns:
● Launch-off shift

– Allows FastScan to switch scan enable At- speed
(requires additional clock routing of SE)

– Applies combinational ATPG

● Broadside
– Scan enable timing is not critical
– Applies clock sequential ATPG
– Activated when clock-sequential depth

 is >2

SHIFT SHIFT

CLK

L
au

n
ch

C
ap

tu
re

Capture

SHIFT SHIFT

L
au

n
ch

C
ap

tu
re

Capture

SE

CLK

SE
Design-for-Test: Scan and ATPG Training6-16
December 2003

Creating High Quality Patterns at Low Cost
Creating Transition Fault Patterns:
Launch-Off Shift

Notes:

6-17 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

Creating Transition Fault Patterns: Launch-Off Shift

♦ Do the following to create launch-off shift transition fault
patterns:

ATPG> SET FAult Type Transition

ATPG> SET PAttern Type -Sequential 0 // default

ATPG> CREate PAtterns

It is recommended to use Broadside transition fault patterns.
Design-for-Test: Scan and ATPG Training 6-17
December 2003

Creating High Quality Patterns at Low Cost
Creating Transition Fault Patterns:
Broadside

Notes:

6-18 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

Creating Transition Fault Patterns: Broadside

♦ Do the following to create broadside transition fault patterns:
ATPG> SET FAult Type Transition -no_shift_launch

ATPG> SET PAttern Type -Sequential 2

ATPG> CREate PAtterns
Design-for-Test: Scan and ATPG Training6-18
December 2003

Creating High Quality Patterns at Low Cost
Timing for At-Speed Test

Notes:

6-19 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

Timing for At-Speed Test

♦ Timing is added to transition fault patterns by timeplates in test
procedure files.

♦ FastScan uses the following types of timeplates for broadside
transition fault patterns:

● tp_slow
– Used for load/unload and shift events.

● tp_fast
– Used for clock sequential and capture events.

100 ns100 ns

tp_slow tp_slow tp_fast

tp_fast

20 ns20 ns

Example name

timeplate tp_slow =
 force_pi 0 ;
 measure_po 20 ;
 pulse CLOCK 50 25;
 period 100 ;
 end;

 timeplate tp_fast =
 force_pi 0 ;
 measure_po 5 ;
 pulse CLOCK 10 5;
 period 20 ;
 end;

procedure capture =
 timeplate tp_fast ;
 cycle =
 force_pi ;
 measure_po ;
 pulse_capture_clock ;
 end;
 end;

 procedure clock_sequential =
 timeplate tp_fast ;
 cycle =
 force_pi ;
 pulse_capture_clock ;
 pulse_read_clock ;
 pulse_write_clock ;
 end;
 end;

procedure load_unload =
 scan_group grp1 ;
 timeplate tp_slow ;
 cycle =
 force CLOCK 0 ;
 force scan_en 1 ;
 end ;
 apply shift 7;
 end;
Design-for-Test: Scan and ATPG Training 6-19
December 2003

Creating High Quality Patterns at Low Cost
Timing for At-Speed Test (Cont.)

Notes:

6-20 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

Timing for At-Speed Test (Cont.)

♦ FastScan uses the following timeplates for skewed clocks
● tp_early

– Used in launch-shift capture
– Used in broadside capture

● tp_late
– Used in launch-shift load/unload and shift
– Used in broadside clock-sequential

100 ns100 ns

tp_late tp_late

100 ns

20 ns

tp_early

 timeplate tp_late =
 force_pi 0 ;
 measure_po 10 ;
 pulse CLOCK 90 5;
 period 100 ;
 end;

 timeplate tp_early =
 force_pi 0 ;
 measure_po 10 ;
 pulse CLOCK 10 5;
 period 100 ;
 end;

procedure capture =
 timeplate tp_early ;
 cycle =
 force_pi ;
 measure_po ;
 pulse_capture_clock ;
 end;
 end;

procedure load_unload =
 scan_group grp1 ;
 timeplate tp_late ;
 cycle =
 force CLOCK 0 ;
 force scan_en 1 ;
 end ;
 apply shift 7;
 end;
Design-for-Test: Scan and ATPG Training6-20
December 2003

Creating High Quality Patterns at Low Cost
 Path Delay Pattern Flow

Notes:

6-21 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

 Path Delay Pattern Flow
PATH "path0" =
 PIN /p5/pic1/inst_reg_8/DFF1/Q + ;
 PIN /p5/pic1/inst_reg_8/BUF1/IN + ;
 PIN /p5/pic1/inst_reg_8/BUF1/OUT + ;
 PIN /p5/pic1/inst_reg_8/Q + ;
 PIN /p5/pic1/U888/B + ;
 PIN /p5/pic1/U888/UP1/IN1 + ;
 PIN /p5/pic1/U888/UP1/OUT + ;
 PIN /p5/pic1/U888/Z + ;
 PIN /p5/pic1/U953/B + ;
 PIN /p5/pic1/U953/UP1/IN1 + ;
 PIN /p5/pic1/U953/UP1/OUT - ;
 PIN /p5/pic1/U953/Z - ;
 PIN /p5/pic1/U966/F - ;
 PIN /p5/pic1/U966/UP3/IN1 - ;
 PIN /p5/pic1/U966/UP3/OUT - ;
 PIN /p5/pic1/U966/UP4/IN2 - ;
 PIN /p5/pic1/U966/UP4/OUT + ;
 PIN /p5/pic1/U966/UP5/IN + ;
 PIN /p5/pic1/U966/UP5/OUT + ;
 PIN /p5/pic1/U966/Z + ;
 PIN /p5/pic1/U1054/D + ;
 PIN /p5/pic1/U1054/UP1/IN3 + ;
 PIN /p5/pic1/U1054/UP1/OUT - ;
 PIN /p5/pic1/U1054/Z - ;
 PIN /p5/pic1/pc_reg_2/D - ;
 PIN /p5/pic1/pc_reg_2/INV1/IN - ;
 PIN /p5/pic1/pc_reg_2/INV1/OUT + ;
 PIN /p5/pic1/pc_reg_2/INV2/IN + ;
 PIN /p5/pic1/pc_reg_2/INV2/OUT - ;
 PIN /p5/pic1/pc_reg_2/MUX1/IN1 - ;
 PIN /p5/pic1/pc_reg_2/MUX1/OUT - ;
 PIN /p5/pic1/pc_reg_2/MUX2/IN0 - ;
 PIN /p5/pic1/pc_reg_2/MUX2/OUT - ;
 PIN /p5/pic1/pc_reg_2/DFF1/D1 - ;
END ;.
..

FastScan

Static Timing
Analysis Tool

Critical Paths

Path delay
Patterns
Design-for-Test: Scan and ATPG Training 6-21
December 2003

Creating High Quality Patterns at Low Cost
Path Delay Patterns (Cont.)

Notes:

6-22 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

Path Delay Patterns

♦ Path delay patterns contain the following events:
● Load scan chains
● Force PIs
● Pulse clock
● Force PIs
● Measure POs
● Pulse clock
● Unload scan chains
Design-for-Test: Scan and ATPG Training6-22
December 2003

Creating High Quality Patterns at Low Cost
Path Definition Files

Notes:

6-23 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

Path Definition Files

♦ In an external ASCII file, you must define all paths that you
want tested in the test set.

♦ For each path, specify the following:
● Path_name

– A unique name that defines the path.

● Path_definition
– The topology of the path from launch to capture point as defined by

an ordered list of pin pathnames.
Design-for-Test: Scan and ATPG Training 6-23
December 2003

Creating High Quality Patterns at Low Cost
Creating Path Delay Patterns

Notes:

6-24 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

Creating Path Delay Patterns

♦ Do the following to create path delay patterns:
ATPG> SET PAttern Type -Sequential 2

ATPG> SET FAult Type path_delay

ATPG> LOAd PAths <path filename>

ATPG> CREate PAtterns
Design-for-Test: Scan and ATPG Training6-24
December 2003

Creating High Quality Patterns at Low Cost
IDDQ Patterns

Notes:

6-25 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

IDDQ Patterns

♦ FastScan supports the pseudo stuck-at fault model
for IDDQ testing.

♦ IDDQ patterns check for excessive leakage current.
♦ FastScan supports:

● Selective IDDQ testing.
– Selects IDDQ patterns from pre-existing generated patterns.

● Supplemental IDDQ testing.
– Creates supplemental IDDQ patterns.
Design-for-Test: Scan and ATPG Training 6-25
December 2003

Creating High Quality Patterns at Low Cost
Creating IDDQ Patterns

Notes:

6-26 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

Creating IDDQ Patterns

♦ Do the following to create IDDQ patterns from an Existing
Pattern Set :

ATPG> SET FAult Type IDDQ

ATPG> SET IDDQ Checks -All

ATPG> SET IDDQ Strobe -All

ATPG> SET PAttern Source External <stuckatpat.Ascii>

ATPG> SELect IDDQ Patterns -Max 10

ATPG> REPort STatistics

Use the “Noeliminate” switch for the SELect IDDQ Patterns
command; this will keep the stuck-at faults and 10 patterns
 in one set.
Design-for-Test: Scan and ATPG Training6-26
December 2003

Creating High Quality Patterns at Low Cost
Creating IDDQ Patterns (Cont.)

Notes:

6-27 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

Creating IDDQ Patterns (Cont.)

♦ Do the following to create IDDQ patterns from scratch:
SETUP> SET SYstem Mode ATPG

ATPG> SET FAult Type IDDQ

ATPG> SET IDDQ Checks -All

ATPG> SET ATpg Compression ON

ATPG> RUN

ATPG> SELect IDDQ Patterns -Max 100

ATPG> SAVe PAtterns <pattern_name>
Design-for-Test: Scan and ATPG Training 6-27
December 2003

Creating High Quality Patterns at Low Cost
Optimizing Quality and Cost

Notes:

6-28 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

Optimizing Quality and Cost

♦ Pattern optimization:
● Patterns must fit within tester memory
● Compression can reduce pattern count by a factor of 10

– Dynamic
– Static
– Multiclock // activated when sequential depth>2

● If patterns do not fit into tester memory, truncation is necessary
● The ORDer PAttern command reorders the pattern set from

highest fault detection to least fault detection

SETUP>SET SImulation Mode Comb -Depth 2
//Multiclock
.
.
.

ATPG>CREate PAtterns -Compact
ATPG>ORDer PAttern 3

Included when using
CREate PAtterns
Design-for-Test: Scan and ATPG Training6-28
December 2003

Creating High Quality Patterns at Low Cost
Optimizing Quality and Cost (Cont.)

Notes:

6-29 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

Optimizing Quality and Cost (Cont.)

♦ Always utilize compression and fault hierarchy when
optimizing your test pattern set.

Netlist

GENERATEGENERATE
Additional Stuck-at PatternsAdditional Stuck-at Patterns

GENERATEGENERATE
Additional Transition PatternsAdditional Transition Patterns

Critical Path
Patterns

Transition
Patterns

Stuck-at
Patterns

Path
List

GENERATEGENERATE
Critical Path PatternsCritical Path Patterns

Grade for transition coverage

Grade for stuck-at coverage
Design-for-Test: Scan and ATPG Training 6-29
December 2003

Creating High Quality Patterns at Low Cost
ATE Characteristics

Notes:

6-30 • Design-for-Test: Scan and ATPG :
Creating High Quality Patterns at Low Cost

Copyright © 2003 Mentor Graphics Corporation

ATE Characteristics

♦ Know the following ATE characteristics before you work on
your design:

● When using DFTAdvisor, consider the following:
– The number of scan channels available to the tester
– The number of clocks that the tester can support

● When using FastScan, consider the following:
– The frequency of the tester
– The maximum number of timeplates that the tester can support

(restrictions might effect pattern types: At-speed and clock PO)
– The memory depth of the tester
Design-for-Test: Scan and ATPG Training6-30
December 2003

Creating High Quality Patterns at Low Cost
Lab: Creating High Quality Patterns at
Low Cost

Objectives

• Optimize patterns for quality and cost.

• Write a new enhanced procedure file.

• Modify timeplates:

o Edit an existing timeplate.

o Create a new timeplate.

• Apply new timing to patterns.

• Save patterns with a new enhanced procedure file:

o Parallel.

o Serial.

o WGL.

• Create patterns and compress using multiple processes.

• Reorder patterns.

• Create fault models and fault grade:

o Path delay.

o Transition.

o Stuck-at.

o IDDQ.
Design-for-Test: Scan and ATPG Training 6-31
December 2003

Creating High Quality Patterns at Low Cost
List of Exercises

• Exercise 14: Modifying Timeplates

• Exercise 15: Compression Techniques

• Exercise 16: Creating Fault Models and Fault Grading

Getting Started

1. Log in to your workstation if you are not already logged in.

2. Change to the $ATPGNW/lab 6/exercise_14 directory.

shell> cd $ATPGNW/lab6/exercise_14

Exercise 14: Modifying Timeplates

In this exercise, you optimize a test pattern set to have a low vector count, and
then write a new enhanced procedure file. You then modify the timing of the
enhanced procedure file by creating and editing a new timeplate. Next, you apply
the new timing to ATPG and save those pattern sets with the newly modified
enhanced procedure file.

1. Invoke FastScan on the following circuit:

Design: gate_2001_scan.v

Library: adk.atpg

Log file: results/ex_14.log

2. The initial setup commands for the circuit set up and scan information for
this design are in a dofile.

Note

Remember that for the exercises in this lab you use the libraries
found in the libraries_5_to_6 directory.
Design-for-Test: Scan and ATPG Training6-32
December 2003

Creating High Quality Patterns at Low Cost
a. Run the file gate_2001_scan.dofile.

3. The commands to generate clock sequential and RAM sequential test
patterns with a low vector count are also in a dofile.

a. Run the file fs.do.

b. What commands does this file execute?

4. Fill in the following statistics using the information in the FastScan ATPG
Run Statistics dialogue box and the report statistics command:

Table 6-1. Test Pattern Generation Results

Table 6-2.

Type of
Pattern

No. of
Effective
Patterns

No. of
Sim’d
Patterns

No. of
detected

No. of
Aborted

No. of
AU

No.
Redun.
Design-for-Test: Scan and ATPG Training 6-33
December 2003

Creating High Quality Patterns at Low Cost
Table 6-3. Report Statistics ATPG

Table 6-5. Report Coverage/Effectiveness ATPG

5. Write a new test procedure file.

SETUP> write procfile results/ NEW.proc -full -replace

Table 6-4.

Fault Class # faults (coll.) # faults (total)

FU (full)

DS (det_sim)

DI (det_imp)

TI (tied)

RE (redundant)

AU (atpg_untestable)

Table 6-6.

Cov./Effect. # faults (coll.) # faults (total)

test_coverage

fault_coverage

atpg_effectiveness

test_patterns

basic_patterns

ram_seq_patterns

clock_seq_patterns

simulated_patterns

CPU_time (secs)
Design-for-Test: Scan and ATPG Training6-34
December 2003

Creating High Quality Patterns at Low Cost
6. Open the NEW.proc test procedure file. Select File > Open > Text File
(Editable) menu item.

Test procedure files define scan operations and their timing. Non-scan-
related events include the remaining test pattern events not defined in the
test procedure files. While ATPG does not require real timing information,
Automatic Test Equipment (ATE) does require this information. Therefore,
you must modify the test procedures files that you use for ATPG to include
real timing information.

Thus, the patterns that you apply to ATE must specify the waveforms of
each input, output, or bidirectional pin for each cycle.

7. In the following activity, you create a new timeplate and edit the clock
times of this timeplate, and apply this new timing to the clock sequential
procedure.

To modify the timing of the NEW.proc test procedure file, you must create
a new timeplate. First, make a copy of timeplate gen_tp1 as shown in
Figure 6-1.
Design-for-Test: Scan and ATPG Training 6-35
December 2003

Creating High Quality Patterns at Low Cost
Figure 6-1. Copying the Timeplate

a. Using the RMB select Copy, then Paste within the File Viewer.

8. Edit the new timeplate as shown in Figure 6-2.

a. Rename tp1 to tp2.

Note

A quicker way to copy and paste is to highlight the text you want to
copy, then click on the middle mouse button.
Design-for-Test: Scan and ATPG Training6-36
December 2003

Creating High Quality Patterns at Low Cost
b. Change all clock times for tp2 as shown.

Figure 6-2. Renaming the Timeplate

The name of the template is gen_tp2 and its period is 30 ns. The various
clocks also have different waveform timing information.

c. Further down in the file you find a clock_sequential procedure. As it is
written, it uses the first timeplate.

Alter it to reference the second timeplate as shown in Figure 6-3.

Figure 6-3. Editing Timeplate

i. Rename timeplate gen_tp1 to gen_tp2 as shown in Figure 6-3.
Design-for-Test: Scan and ATPG Training 6-37
December 2003

Creating High Quality Patterns at Low Cost
d. Save the edited file as results/NEW2.proc. Make sure to overwrite any
existing files.

e. Close the File Viewer.

The new timing information was added into the new test procedure file
that you saved.

Next, you save patterns with the new timing information from the
gen_tp2 timeplate. This will effect patterns that use clock sequential
procedures.

9. Using the Save Patterns... button in the Button pane, save the patterns to a
file with the following characteristics:

File name: results/testpat_par.v

Pattern format: Verilog

Save Scan Cell Data in: Parallel

Enhanced Procedure File: results/NEW2.proc

Tests to be Saved: Chain & Scan

i. Overwrite any existing files of the same name.

ii. Leave the defaults for everything else.

• Look at the Session Transcript window. What is information is displayed as
the file is being written?

__

__

__

10. Using the Save Patterns... button in the Button pane, save the patterns to a
file with the following characteristics:
Design-for-Test: Scan and ATPG Training6-38
December 2003

Creating High Quality Patterns at Low Cost
File name: results/testpat_ser.v

Pattern format: Verilog

Save Scan Cell Data in: Serial

Enhanced Procedure File: results/NEW2.proc

Tests to be Saved: Chain & Scan

Number of Patterns to Sample Per Pattern Type:3

i. Overwrite any existing files of the same name.

ii. Leave the defaults for everything else.

By setting the Number of Patterns to Sample per Pattern Type to three
you have reduced CPU processing time.

How many patterns are actually sampled? _______________________

• Look at the Session Transcript window. What information is displayed
as the file is being written?

11. Using the Save Patterns... button in the Button pane, save the patterns to a
file with the following characteristics:

File name: results/testpat_ser.WGL

Pattern format: WGL

Save Scan Cell Data in: Serial

Enhanced Procedure File: results/NEW2.proc
Design-for-Test: Scan and ATPG Training 6-39
December 2003

Creating High Quality Patterns at Low Cost
Tests to be Saved: Chain & Scan

i. Overwrite any existing files of the same name.

ii. Leave the defaults for everything else.

• Look at the Session Transcript window. What is information is
displayed as the file is being written?

12. Using the Save Patterns... button in the Button pane, save the patterns to a
file with the following characteristics:

File name: results/testpat_par.WGL

Pattern format: WGL

Save Scan Cell Data in: Parallel

Enhanced Procedure File: results/NEW2.proc

Tests to be Saved: Chain & Scan

i. Overwrite any existing files of the same name.

ii. Leave the defaults for everything else.

• Look at the Session Transcript window. What information is displayed
as the file is being written?

Design-for-Test: Scan and ATPG Training6-40
December 2003

Creating High Quality Patterns at Low Cost
13. Select File > Open > Text File (Read Only) to look at the files you have
written.

a. In each file verify that the gen_tp2 timeplate is used, particularly in the
clock_sequential patterns.

b. When you have finished, close the File Viewer.

14. Exit FastScan.

Exercise 15: Compression Techniques

In this exercise, you create patterns and compress them to achieve a lower vector
count. You compress an initial pattern set using multiple compression techniques,
observing the vector count and run time for each process such as:

• Static

• Dynamic

• Multiclock

You compress patterns using the create patterns command and use
the order patterns command to reorder the test pattern set.

Getting Started

1. Log in to your workstation if you are not already logged in.

2. Change to the $ATPGNW/lab 6/exercise_15 directory.

shell> cd $ATPGNW/lab6/exercise_15

3. Invoke FastScan on the following circuit:

Design: gate_2001_scan.v

Library: adk.atpg
Design-for-Test: Scan and ATPG Training 6-41
December 2003

Creating High Quality Patterns at Low Cost
Log file: results/ex_15.log

You could invoke the tool on the design from the command line and by-
pass the Invocation dialogue box.

What command do you use? ____________________________________

__

4. The initial setup commands for circuit set up and scan information for this
design are in a dofile.

a. Run the file gate_2001_scan.dofile.

b. What do the commands in the file do?

5. Go to ATPG mode, ignoring any DRC warning messages. You should now
be in ATPG system mode.

6. Generate random and deterministic patterns for stuck-at-faults.

7. Fill in the following statistics using the information in the FastScan ATPG
Run Statistics dialogue box and the report statistics command.
When you have finished, DO NOT close the FastScan ATPG Run Statistics
window:
Design-for-Test: Scan and ATPG Training6-42
December 2003

Creating High Quality Patterns at Low Cost
Table 6-7. Test Pattern Generation Results

Table 6-9. Report Statistics ATPG

Table 6-11. Report Coverage/Effectiveness ATPG

Table 6-8.

Type of
Pattern

No. of
Effective
Patterns

No. of
Sim’d
Patterns

No. of
detected

No. of
Aborted

No. of
AU

No.
Redun.

Table 6-10.

Fault Class # faults (coll.) # faults (total)

FU (full)

UO (unobserved)

DS (det_sim)

DI (det_imp)

PU (posdet_untestable)

UU (unused)

TI (tied)

RE (redundant)

AU (atpg_untestable)

Table 6-12.

Cov./Effect. # faults (coll.) # faults (total)

test_coverage

fault_coverage
Design-for-Test: Scan and ATPG Training 6-43
December 2003

Creating High Quality Patterns at Low Cost
So far you have generated random and deterministic test patterns that give
you an initial vector count and run time. In the following lab activities, you
compress the initial pattern set using standard compression techniques.
Then, you observe the vector count and run time for each sequentially
applied process.

Because a tester requires a relatively long time to apply each scan pattern, it
is important to create as small a test pattern set as possible while still
maintaining the same test coverage. Static compression minimizes the
number of test patterns by rerunning fault simulation first in reverse order
and then in random order.

You now statically compress the initial pattern set and observe the results.

8. Statically compress the existing patterns using the Compress... button at the
bottom of the FastScan ATPG Run Statistics dialogue box.

a. Set the Number of Compression Passes to 3.

b. Click the Compress button. The FastScan Pattern Compression
Statistics dialogue box opens.

9. Observe and record the following results:

a. What is the initial pattern count?

b. What is the final pattern count?

atpg_effectiveness

test_patterns

simulated_patterns

CPU_time (secs)

Table 6-12.

Cov./Effect. # faults (coll.) # faults (total)
Design-for-Test: Scan and ATPG Training6-44
December 2003

Creating High Quality Patterns at Low Cost

c. How many patterns have been removed?

Fill in the following:

Table 6-13. Report Coverage/Effectiveness ATPG

d. What is the actual CPU run time for the static compression? (Hint:
Subtract [Total_CPU_Time for step 7) from (Total_CPU_Time for step
9)]) __

e. What do Pass #1 and Pass #3 have in common?

f. What type of compression is applied in Pass #2?

During ATPG dynamic compression, FastScan generates single patterns
that detect a multitude of faults. FastScan selects a target fault, determines

Table 6-14.

Cov./Effect. # faults (coll.) # faults (total)

Total No. Faults
(FU)

test_coverage

fault_coverage

atpg_effectiveness

test_patterns

simulated_patterns

CPU_time (secs)
Design-for-Test: Scan and ATPG Training 6-45
December 2003

Creating High Quality Patterns at Low Cost
the pattern conditions necessary to detect the fault, then attempts to merge
detection of other faults with the same pattern.

10. Next you dynamically compress the pattern set without
multi_clock_capture compression.

Multi_clock_capture is an optional switch for compression that specifies
that FastScan should use a compression algorithm capable of handling
multiple clock designs. Multiple clock compression uses sequential ATPG.
This is the default when there are multiple clocks in a design and the
sequential depth is greater than one.

a. Reset all detected faults to undetected, deleting the internally generated
test set.

 ATPG> reset state

This does not alter those faults classified as AU, but resets all others to
undetected, thus improving the run’s efficiency.

b. Set ATPG compression.

 ATPG> set atpg compresssion on -nomulti_clock_capture

c. Generate random and deterministic patterns for stuck-at-faults using all
defaults.

What command do you use to re-simulate existing patterns?
Remember, the fault universe has already been set up.

11. Display a detailed report of the design’s simulation statistics.
Design-for-Test: Scan and ATPG Training6-46
December 2003

Creating High Quality Patterns at Low Cost
Table 6-15. est Pattern Generation Results

Table 6-17. Report Coverage/Effectiveness ATPG

Table 6-16.

Run No. of
Effective
Patterns

No. of
Sim’d
Patterns

No. of
detected

No. of
Aborted

No. of
AU

No.
Redun.

No
multiclk
W/
multiclk
Create
patterns

No
multiclk
W/
multiclk
Create
patterns

No
multiclk
W/
multiclk
Create
patterns

Table 6-18.

Run Cov./Effect. # faults
(coll.)

faults
(total)

With no multiclock
With multiclock
Create patterns

Total No. Faults
(FU)

Design-for-Test: Scan and ATPG Training 6-47
December 2003

Creating High Quality Patterns at Low Cost
12. Next you dynamically compress the pattern set with multi_clock_capture.

a. Reset all detected faults to undetected, deleting the internally generated
test set.

What command do you use? ________________________________

b. Set ATPG compression.

What command do you use? ________________________________

c. Set simulation mode to a depth of 3.

With no multiclock
With multiclock
Create patterns

test_coverage

With no multiclock
With multiclock
Create patterns

fault_coverage _______

With no multiclock
With multiclock
Create patterns

atpg_effectiveness _______

With no multiclock
With multiclock
Create patterns

test_patterns _______

With no multiclock
With multiclock
Create patterns

simulated_patterns _______

With no multiclock
With multiclock
Create patterns

CPU_time (secs) _______

Table 6-18.

Run Cov./Effect. # faults
(coll.)

faults
(total)
Design-for-Test: Scan and ATPG Training6-48
December 2003

Creating High Quality Patterns at Low Cost
ATPG> set simulation mode combinational -depth 3

d. Generate random and deterministic patterns for stuck-at-faults using all
defaults.

What command do you use to re-simulate existing patterns?

 __

13. Fill in the second line of statistics in the above two tables, using the
report statistics command and the FastScan ATPG Run Statistics
window.

What is the actual CPU run time for the static compression?
__

14. Next you dynamically compress the pattern set using the create
patterns command.

a. Reset all detected faults to undetected, deleting the internally generated
test set.

What command do you use? _________________________________

b. Generate random and deterministic patterns for stuck-at-faults using all
defaults.

 ATPG> create patterns

Note

This could take around 15 minutes, depending upon your OS.

Note

This could take around 20 minutes, depending upon your OS.
Design-for-Test: Scan and ATPG Training 6-49
December 2003

Creating High Quality Patterns at Low Cost
15. Fill in the third line of statistics in the above two tables, using the report
statistics command and the FastScan ATPG Run Statistics window.

a. How many basic_patterns are there? ___________________________

b. How many clock_sequential patterns are there? ___________________

c. What is the actual CPU run time for the static compression?
__

So far you created a test pattern set and applied various compression
techniques to achieve the lowest vector count with the highest test
coverage. The best compression technique is achieved by using the
create patterns command, and is the recommended method for
creating and compressing patterns.

16. In the next activity, you use the order patterns command to reorder
the current internal pattern set from highest fault detection to least fault
detection.

The order patterns command rearranges the order of the internal set
so that patterns that detect the most faults are first. This is useful when you
need to:

• Truncate the test pattern set in order to fit it in the tester’s memory.

• Detect failing chips earlier during test.

17. To order patterns, issue the command at the ATPG prompt:
ATPG> order patterns 5

The order pattern command supports stuck-at and transition fault
models only.

In this case, the argument (5) indicates the number of passes FastScan takes
through the data as it reorders the pattern set.
Design-for-Test: Scan and ATPG Training6-50
December 2003

Creating High Quality Patterns at Low Cost
18. Consider the pattern runs and observe how the ordering has an effect on the
faults by filling in the following table:

19. At this point you have generated a compact pattern set in an optimal order.
It is necessary to save the patterns as done in the previous exercise.

a. What type of pattern would you save to archive the design, and/or to
allow further work on the patterns at a later time?

__

b. What types of pattern would you save to allow simulation of scan tests,
including the loading and unloading of patterns?

__

Table 6-19. Order Patterns Results

Patterns
Simulated

 Test Coverage
Pass 1 Pass 2 Pass 3 Pass 4 Pass 5

32

64

96

128

160

192

224

256

288

320

352

365
Design-for-Test: Scan and ATPG Training 6-51
December 2003

Creating High Quality Patterns at Low Cost
c. What types of pattern would you save to simulate all the patterns?

d. Give an example of one type of pattern that could be saved to be used
on ATE:

e. Save one or all of the pattern types as time permits.

20. Exit FastScan.

Exercise 16: Creating Fault Models and Fault Grading

In this exercise, you create the following fault models:

• Path delay

• Transition

• Stuck-at

• IDDQ

As you create each fault model you save each pattern type and you fault grade that
pattern into the next fault model. By fault grading your patterns, you create one
high quality test pattern set.

Getting Started

1. Log in to your workstation if you are not already logged in.

2. Change to the $ATPGNW/lab 6/exercise_16 directory.

shell> cd $ATPGNW/lab6/exercise_16

3. Invoke FastScan on the following circuit:
Design-for-Test: Scan and ATPG Training6-52
December 2003

Creating High Quality Patterns at Low Cost
Design: gate_2001_scan.v

Library: adk.atpg

Log file: results/ex_16.log

You could invoke the tool on the design from the command line and by-
pass the Invocation dialogue box.

What command do you use? ____________________________________

__

4. The initial setup commands for circuit set up and scan information for this
design are in a dofile.

Run the file gate_2001_scan.dofile.

5. Go to ATPG mode, ignoring any DRC warning messages. You should now
be in ATPG system mode.

6. Create path delay patterns:

In this activity, you create path delay patterns to detect timing related
defects in circuit paths. The path delay test requires the at-speed application
of two patterns: initialization and propagation, to detect delay faults in the
critical path. These patterns test for lumped time delay—sum of time delays
that stack up. Path delay faults do not have localized fault sites. Rather, they
are associated with the AC testing of critical paths.
Path delay patterns detect partially conducting transistors and diffusion
problems.

Path delay faults are identified by path topology.

Path topology is a user-defined path that describes the critical path from the
launch point to the capture point as defined by an ordered list of pin
pathnames.

The launch point is either a primary input or a state element. The capture
point is either a primary output or a state element. state elements used for
Design-for-Test: Scan and ATPG Training 6-53
December 2003

Creating High Quality Patterns at Low Cost
launch or capture points are either scan elements or non-scan elements that
qualify for clock-sequential handling.

A path definition file defines the paths for which you want patterns
generated. FastScan can load in a path definition file and store it as an
internal path list.

a. Set up the Fault Universe:

i. Model: Path Delay

ii. Setup for model: Load Path Definitions From a File:

 pathfile_1

Pattern Sequential depth = 2

You can set up the Fault Universe (Customize) using commands or
dialogue boxes. After you finish, look at the Session Transcript
window.

iii. Click on the Run button in the Button pane. When the Fault List
Required dialogue box opens, select Add all Faults.

What commands are executed?

b. Fill in the following statistics using the information in the FastScan
ATPG Run Statistics dialogue box and the report statistics
command:
Design-for-Test: Scan and ATPG Training6-54
December 2003

Creating High Quality Patterns at Low Cost
Table 6-20. Test Pattern Generation Results

Table 6-22. Report Coverage/Effectiveness

Table 6-21.

Run No. of
Effective
Patterns

No. of
Sim’d
Patterns

No. of
detected

No. of
Aborted

No. of
AU

No.
Redun.

Path_delay

Path_delay
graded for
transition

 Transition
Patterns

Transition
graded for
stuck-at

Stuck-at
patterns

Stuck-at
graded for
IDDQ

Table 6-23.

Run Total
No. of
Full
Faults
(FU)

test
cover.

fault
cover.

atpg
effective.

test
pat.

clock
seq.

sim.
pat.

Path_delay

Path_delay
graded for
transition
Design-for-Test: Scan and ATPG Training 6-55
December 2003

Creating High Quality Patterns at Low Cost
c. Using the Save Patterns... button in the Button pane save the patterns to
a file in ASCII format with the following characteristics:

File name: results/testpat_path.ascii

Pattern format: ASCII

Save Scan Cell Data in: Parallel

i. Overwrite any existing files of the same name.

ii. Leave the defaults for everything else.

You now have created path delay patterns and saved them in ASCII
format.

7. Fault grade the Path Delay patterns for transition faults.

 Transition
Patterns

Transition
graded for
stuck-at

Stuck-at
patterns

Stuck-at
graded for
IDDQ

Table 6-23.

Run Total
No. of
Full
Faults
(FU)

test
cover.

fault
cover.

atpg
effective.

test
pat.

clock
seq.

sim.
pat.
Design-for-Test: Scan and ATPG Training6-56
December 2003

Creating High Quality Patterns at Low Cost
Fault grading is the process of simulating a target vector against a good
circuit description, and simultaneously a circuit description that contains a
fault to detect a difference from the expected response.

In this activity, you grade the path delay patterns that detect transition faults
for the transition fault model and create transition fault patterns.

The transition faults model tests for gross pin-to-pin delay effects, which
are the result of partially conducting transistors and interconnections.
Because the transition fault model behaves as a stuck-at fault for a brief
period of time, it requires the at-speed application of two test patterns for
detection. The first vector is the initialization vector. It places the initial
transition value at the fault site. The second vector is the transition vector. It
is identical to the vector that would detect the associated stuck-at fault. It
places the final transition value at the fault site. The transition fault model
includes the slow-to rise and the slow-to fall fault models.

a. Select the transition fault model.

 ATPG> set fault type transition

b. Set pattern source to external.

 ATPG> set pattern source external \
./results/testpat_path.ascii -all_patterns

c. Add faults to fault list.

What command do you use? __________________________________

d. Set the simulation mode to combinational, depth 2.

What command do you use? __________________________________

e. Fault grade the patterns then fill in the second line in the tables.

Note

It is recommended to use the -all_patterns switch to retain all
pattern data.
Design-for-Test: Scan and ATPG Training 6-57
December 2003

Creating High Quality Patterns at Low Cost
ATPG> run

8. Generate transition patterns for transition faults.

You fault graded the path delay patterns for the transition fault model. Next
you add internally generated patterns into the test set in order to attain
higher test coverage.

a. Use the internally generated patterns.

 ATPG> set pattern source internal

What warning message appears? ______________________________

b. Generate patterns, remembering that the fault universe was set up when
we graded the faults.

What command do you use?__________________________________

Note that even though the external patterns were removed, the fault
universe still is aware of the coverage given by these external patterns,
and the fault list does not contain the transition faults detected by the
external patterns.

c. Fill in the third line of the tables.

d. Using the Save Patterns... button in the Button pane save the patterns to
a file in ASCII format with the following characteristics:

File name: results/testpat_transition.ascii

Pattern format: ASCII

Save Scan Cell Data in: Parallel

i. Overwrite any existing files of the same name.

ii. Leave the defaults for everything else.
Design-for-Test: Scan and ATPG Training6-58
December 2003

Creating High Quality Patterns at Low Cost
You have now created transition patterns and saved them in ASCII
format.

9. Fault grade transition patterns for stuck-at faults.

Now you are going to fault grade the transition patterns for the stuck-at
fault model and create additional stuck-at test patterns to obtain better test
coverage.

The stuck-at fault model models behavior that occurs at the gate level if the
terminals of a gate are stuck at either high (stuck-at-1) or low (stuck-at-0)
voltage levels. Most physical defects that occur exhibit behavior that makes
a node appear to be stuck at power or ground.

a. Select the stuck-at fault model.

ATPG> set fault type stuck

What warning messages appear?

b. Set the pattern source to external since we use the patterns we just
saved.

What command do you use? __________________________________

c. Add faults to the fault list.

d. Set the simulation mode to combinational, depth 2

e. Fault grade the patterns.

What command do you use? __________________________________

f. Fill in the fourth line in the tables.

10. Generate stuck-at patterns for stuck-at-faults.
Design-for-Test: Scan and ATPG Training 6-59
December 2003

Creating High Quality Patterns at Low Cost
You fault graded the transition patterns for the stuck-at-fault model. Next
you add internally generated patterns into the test set to attain higher test
coverage.

a. Use the internally generated patterns.

What command do you use? __________________________________

b. Generate patterns, remembering that the fault universe was set up when
we graded the patterns.

Note that even though the external patterns were removed, the fault
universe still is aware of the coverage given by these external patterns,
and the fault list does not contain the transition faults detected by the
external patterns.

c. Fill in the fifth line of the tables.

d. Using the Save Patterns... button in the Button pane save the patterns to
a file in ASCII format with the following characteristics:

File name: results/testpat_stuck.ascii

Pattern format: ASCII

Save Scan Cell Data in: Parallel

i. Overwrite any existing files of the same name.

ii. Leave the defaults for everything else.

You have now created stuck-at patterns and saved them in ASCII
format.

11. Fault grade stuck-at patterns for IDDQ faults and create IDDQ patterns.

IDDQ testing measures device current and rejects a part if the measured
current is over a threshold level. Because IDDQ testing is costly and
impractical to monitor current for every test vector in the set, a small
efficient set of patterns can typically be selected or generated for IDDQ
Design-for-Test: Scan and ATPG Training6-60
December 2003

Creating High Quality Patterns at Low Cost
testing. IDDQ testing provides a means of detecting CMOS transistor
stuck-on conditions and bridge defects.

a. Select the stuck-at fault model.

What command do you use? __________________________________

b. Set pattern source to external.

What command do you use? __________________________________

c. Add faults to the fault list.

d. Set the simulation mode to combinational, depth 2.

e. Set IDDQ checks.

 ATPG> set Iddq checks -int_float -atpg

For CMOS circuits with pull-up or pull-down resistors or tri-state
buffers, the good circuit should have a nearly zero IDDQ current.
FastScan allows you to specify various IDDQ measurement checks to
ensure that the good circuit does not raise IDDQ current during the
measurement.

In this example, we create IDDQ patterns while checking that internal
buses are not floating during an IDDQ measure, and requires
deterministic ATPG to ensure that this is true.

Rarely do you have to check for all of them, so it is recommended that
you select the appropriate checks.

f. Set IDDQ strobe.

 ATPG> set Iddq strobe -all

Specifies which fault grading patterns will perform IDDQ measures
during simulation.

g. Select IDDQ patterns -max 10.
Design-for-Test: Scan and ATPG Training 6-61
December 2003

Creating High Quality Patterns at Low Cost

ATPG> select iddq patterns -max 10

This command selects the patterns that most effectively detect IDDQ
faults. The -threshold switch sets the number of IDDQ measures.
This can take a long time.

The FastScan IDDQ Pattern Selection Statistics dialogue box opens.

h. Fill in the sixth line of the tables.

i. Using the Save Patterns... button in the Button pane save the patterns to
a file in ASCII format with the following characteristics:

File name: results/testpat_iddq.ascii

Pattern format: ASCII

Save Scan Cell Data in: Parallel

i. Overwrite any existing files of the same name.

ii. Leave the defaults for everything else.

You have now created iddq patterns and saved them in ASCII format.

12. Exit FastScan.
Design-for-Test: Scan and ATPG Training6-62
December 2003

Creating High Quality Patterns at Low Cost
Test Your Knowledge

1. Why must test procedure files include real timing information?

__

2. List the steps you would take to create a new timeplate.

__

3. What is the recommended command to use when creating and compressing
patterns?

__

4. Why use the Order Patterns command?

__

5. What happens when you use the Reset State command?

__

6. What is a path definition file?

__

7. What do transition fault patterns detect?

__

8. Can you reorder IDDQ fault patterns?

__
Design-for-Test: Scan and ATPG Training 6-63
December 2003

Creating High Quality Patterns at Low Cost
Lab Summary

Now that you completed the Creating High Test Coverage lab, you should know
how to do the following:

• Modify and create timeplates.

• Save patterns with a new enhanced procedure file.

• Create patterns and compress using multiple processes.

• Reorder files.

• Create fault models and fault grade:

o Path delay.

o Transition.

o Stuck-at.

o IDDQ.

Design-for-Test: Scan and ATPG Training6-64
December 2003

Module 7
Advanced ATPG

Objectives

Upon completion of this module, you will be able to:

• Use FastScan to identify and black box missing modules.

• Use DFTAdvisor to write a netlist with a black box definition.

• Use MacroTest to test memories.

• Use BSDArchitect to write a test procedure file.
Design-for-Test: Scan and ATPG Training 7-1
December 2003

Administrator
Highlight

Advanced ATPG
Module Topics

Notes:

7-2 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Module Topics

♦ This module addresses the following topics:
● Black boxes
● Testing embedded blocks
● Boundary scan and other complex initialization issues
● Top-up ATPG
● Diagnostics
Design-for-Test: Scan and ATPG Training7-2
December 2003

Advanced ATPG
Black Boxes

Notes:

7-3 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Black Boxes
♦ Allow analysis of

incomplete designs
● Isolates analog blocks
● Isolates proprietary IP

♦ Warns if an undefined
module is detected

● The undefined module is
not black boxed

♦ Use ADD Black Box -Auto
command to black box all
undefined modules

// FastScan v8.2003_3.10 Fri Jun 8 13:13:39 PDT 2003
// Copyright (c) Mentor Graphics Corporation, 1992-2003, All Rights Reserved.
// UNPUBLISHED, LICENSED SOFTWARE.
// CONFIDENTIAL AND PROPRIETARY INFORMATION WHICH IS THE
// PROPERTY OF MENTOR GRAPHICS CORP OR ITS LICENSORS.
//
// USE OF THIS SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS.
//
//
// Mentor Graphics software executing under Sun SPARC SunOS.
// 32 bit version
//
// Compiling library ...
// Reading Verilog Netlist ...
// Reading Verilog file top.v
// Finished reading file top.v
// Warning: Following modules are undefined:
// BU110
// TDN1J
// DPL61
// AN220
// Use "add black box -auto" to treat as black boxes

// command: set sys m atpg
// Error: Instance of undefined model found, check black

box warnings and use Add Black Box -auto to
make these default black box models

//
// command: report blac box -undefined
// Undefined Modules:
// BU110
// TDN1J
// DPL61
// AN220
//

// command: ADD BLack Box -Auto
…

Design-for-Test: Scan and ATPG Training 7-3
December 2003

Advanced ATPG
Black Box Examples

Notes:

7-4 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Black Box Examples

♦ Example to create a black box for module core with tie value
of 0
SETUP> ADD Black Box -module core 0

♦ Change I/O behavior of black boxes or to make an existing
black box into a module:
SETUP> ADD Black Box -instance core1 -pin pin1 1
…
SETUP> DELete Black Box -module core 0

SETUP> REPort Black Box -all

♦ Write a netlist with black box definitions:
SETUP> WRIte NEtlist <file_name> -user_setup
Design-for-Test: Scan and ATPG Training7-4
December 2003

Administrator
Highlight

Administrator
Highlight

Advanced ATPG
Testing Embedded Blocks

Notes:

7-5 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Testing Embedded Blocks

♦ Testing embedded blocks introduces the following issues:
● Testing challenges for blocks
● Testing challenges of logic around the block (shadow logic)

Embedded block
(macro)

Shadow logic
Shadow logic

Scan Scan

Address

Data In Data Out

Control
Logic Logic
Design-for-Test: Scan and ATPG Training 7-5
December 2003

Advanced ATPG
Testing Embedded Blocks (Cont.)

Notes:

7-6 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Testing Embedded Blocks (Cont.)

♦ The following ATPG techniques are used to test embedded
memories:

● MacroTest is a FastScan feature that converts an existing pattern
file into scan patterns.

● Memory BIST adds built-in self-test logic.
● Memory BIST bypass enables the testing of shadow logic.
● RAM-sequential and multi-load patterns test through memory to

target shadow logic.
Design-for-Test: Scan and ATPG Training7-6
December 2003

Advanced ATPG
Testing Embedded Memories: MacroTest

Notes:

7-7 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Testing Embedded Memories: MacroTest

♦ MacroTest converts each
functional pattern into a
scan pattern.

010001
01110101
01000010
10011100
10111000
11110011

MacroLogic Logic

F as tS can MacroTest
Scan Patterns Scan Patterns

1

0

1

1

1

1

10

0

0

0

1

0

0

1

1
1

1

1
1
1

1

0
0

0

0

0
0

0

MacroTest Vectors
(user defined)

//
// Macrotest pattern file for ram
//
// model picdram (clk, address, we, din, dout) (
// input(clk, we) ()
// input(address) (array = 6:0;)
// input(din) (array = 7:0;)
// output(dout) (array = 7:0;

// d
// c a d o
// l d w i u
// k d e n t

 P 0000100 1 00000000 XXXXXXXX
 P 0000101 1 00000000 XXXXXXXX
 P 0000110 1 00000000 XXXXXXXX
 P 0000111 1 00000000 XXXXXXXX

 P 0000000 0 XXXXXXXX LLLLLLLL
 P 0000000 1 11111111 XXXXXXXX
 P 0000000 0 XXXXXXXX HHHHHHHH
 P 0000001 0 XXXXXXXX LLLLLLLL
 . . .

P 0000000 1 00000000 XXXXXXXX
P 0000001 1 00000000 XXXXXXXX
P 0000010 1 00000000 XXXXXXXX
P 0000011 1 00000000 XXXXXXXX
Design-for-Test: Scan and ATPG Training 7-7
December 2003

Advanced ATPG
Testing Embedded Memories: MacroTest
(Cont.)

Notes:

7-8 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Testing Embedded Memories: MacroTest (Cont.)

♦ The following apply to MacroTest:
● Converts a pre-existing pattern set for the macro and delivers it

at the IC level
– No additional logic required
– No extra routing
– No area impact

● Used with any embedded macro with digital I/Os
● Patterns randomly filled and fault simulated

 to reduce pattern count
● Has advanced debugging capabilities that report

pattern translation problems
● Not targeted for macros that contain internal scan
Design-for-Test: Scan and ATPG Training7-8
December 2003

Advanced ATPG
At-Speed MacroTest

Notes:

7-9 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

At-Speed MacroTest

P to pulse
clock

define input
and outputs

P 000 LLLLLLLL 0 xxxxxxxx+ // Read zeros from address 0
P 000 LLLLLLLL 0 xxxxxxxx
P 000 xxxxxxxx 1 11111111+ // Write ones to address 0
P 000 HHHHHHHH 0 xxxxxxxx+ // Read ones from address 0
P 000 HHHHHHHH 0 xxxxxxxx

P 001 LLLLLLLL 0 xxxxxxxx+ // Read zeros from address 1
P 001 LLLLLLLL 0 xxxxxxxx
P 001 xxxxxxxx 1 11111111+ // Write ones to address 1
P 001 HHHHHHHH 0 xxxxxxxx+ // Read ones from address 1

…

‘+’ to perform
next pattern
without scan
chain load

This pattern set This pattern set
is a simplifiedis a simplified

March algorithmMarch algorithm

Adds[2]
Adds[1]
Adds[0]

Din[7]
Din[6]
…
WE

clk

Dout[7]
Dout[6]
Dout[5]
…

Memory

0
0
0

1
1
1

1

1

1

0

1
0
0
0
0

Scan cell values
for 2nd pattern

Scan cell values for 1st

memory pattern

First set of scan cellsSecond set of scan

1
0
0
0
0
0
0
0
X
1

1
X
0
0
0
X
1
0
X
1

New Methods Test Small Memory Arrays,
Jeff Boyer, Intel, Austin,TX

Ron Press, Mentor Graphics

2/1/2003
Design-for-Test: Scan and ATPG Training 7-9
December 2003

Advanced ATPG
Testing Embedded Memories:
Synchronous MacroTest

Notes:

7-10 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Testing Embedded Memories : Synchronous MacroTest

♦ The following apply to
synchronous MacroTest …

● Allows for the testing of
synchronous memories.

● Uses the following circuit
configuration:

– A single clock is
connected to the macro
(read and write pin)
and is shared with the
scan chain.

– A separate write enable.

● Applies several macro
patterns without reloading
the scan chain (pipe line)

CLK

RAM
or

Macro
Design-for-Test: Scan and ATPG Training7-10
December 2003

Advanced ATPG
Testing Embedded Memories:
Synchronous MacroTest (Cont.)

Notes:

7-11 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Testing Embedded Memories : Synchronous MacroTest
(Cont.)

♦ Writes using a one-cycle pattern.
● Data is stable during shift because write enable is off during

shift.

♦ Reads using a two-cycle read/observe pattern.
● First clock pulses the RAM’s read enable (data comes out of the

RAM).
● Second clock pulse captures data into the scan chain before

shifting changes the RAM’s output values
(no independent read enable).

♦ Note: MacroTest patterns cannot be reordered.
● Prior to generating additional patterns, save patterns and fault

list.
Design-for-Test: Scan and ATPG Training 7-11
December 2003

Advanced ATPG
Built-In Self-Test Basics

Notes:

7-12 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Built-In Self-Test Basics

♦ BIST circuitry places the job
of device testing inside the
device itself.

♦ BIST circuitry generates its
own stimulus and analyzes its
own response.

♦ BIST has two modes of
operation:

● System mode - passes system
data to the core, bypasses
BIST circuitry.

● Test mode - BIST circuitry runs
self-test function.

Circuit
Under
TestP

at
te

rn
G

en
er

at
o

r

BIST
Controller

R
es

p
o

n
se

A
n

al
yz

er

M
U

X

From system
To system
Design-for-Test: Scan and ATPG Training7-12
December 2003

Advanced ATPG
Testing Embedded Memories: Memory
BIST

Notes:

7-13 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Testing Embedded Memories: Memory BIST

Memory
BIST

Controller
Comparator

LOGIC

XOR

ADDR

DATA_IN

Control
DATA_OUT

Bypass

RAM

♦ BIST provides a memory test solution for difficult-to-test RAM
and ROM models in a design.

♦ Memory BIST circuitry generates patterns based on a variety
of algorithms that focus on a particular type of circuitry or
fault type.

LOGIC
Design-for-Test: Scan and ATPG Training 7-13
December 2003

Advanced ATPG
Testing Embedded Memories: Memory
BIST Bypass

Notes:

7-14 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Testing Embedded Memories: Memory BIST Bypass

♦ MBISTArchitect uses the following bypass options
to speed up ATPG:

● Memory bypass
● Memory bypass in scan mode

Address

Data In Data Out

Control

D Q

D Q

CLK

ADDR
DIN

We, oe, etc. DOUT

Scan

Address

Data In Data Out

Control

Shadow
Logic

Scan

Shadow
Logic

MBISTArchitect automatically
inserts a memory bypass

An option of MBISTArchitect
that configures scan logic to bypass
 the memory during scan
Design-for-Test: Scan and ATPG Training7-14
December 2003

Advanced ATPG
Initialization Issues

Notes:

7-15 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Initialization Issues

♦ Circuitry must be initialized prior to applying patterns.
● Internally generated reset line.
● Internally controlled test_enable.
● Gated clock control.

♦ This is accomplished by a test_setup procedure.
♦ The test_setup procedure is used to:

● Set circuitry to a known initial state.
● Initialize boundary scan: Joint Test Action Group (JTAG)

circuitry.
Design-for-Test: Scan and ATPG Training 7-15
December 2003

Advanced ATPG
Initialization Issues (Cont.)

Notes:

7-16 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Initialization Issues (Cont.)

♦ The test_setup procedure does the following:
● Sets non-scan state elements to known values
● Sets pin constraints to maintain an initialized state

– Use only force commands

♦ Applied only once - at the start of the pattern set
♦ Allowed only once for all scan groups

procedure test_setup =

 timeplate tp0;

 // Apply reset procedure

 // Test cycle one

 cycle =

 force TMS 1;

 force TDI 0;

 force TRST 0;

 pulse TCK;

 end;

.

.

.

end;
Design-for-Test: Scan and ATPG Training7-16
December 2003

Advanced ATPG
Initialization Example

Notes:

7-17 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Initialization Example

SI Q SI Q SI Q

D QR

SI

CLK

SO

Test_setup ;
 force R 1 ;
 pulse CLK ;
end ;

SETUP>ADD PIn Constraint R c1
...

Setup>SET SYstem Mode ATPG
...
//TIE1 not TIEX

Do not scan
reset register

1

1 11

Procedure

Part of dofilePart of procedure file
Design-for-Test: Scan and ATPG Training 7-17
December 2003

Advanced ATPG
Auto Generate Test_Setup

Notes:

7-18 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Auto Generate Test_Setup

♦ FlexTest can automatically save out a simulation into a
TEST_SETUP procedure

ATPG> SAVe PAtterns … -test_setup

♦ Useful flow is to fault simulate functional initialization routines
(boundary scan)

● Save fault list for FastScan ATPG
● Save test_setup for FastScan ATPG
Design-for-Test: Scan and ATPG Training7-18
December 2003

Advanced ATPG
Boundary Scan Basics

Notes:

7-19 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Boundary Scan Basics

♦ Based on the IEEE 1149.1 standard
♦ Sometimes referred to as Joint Test Action Group (JTAG)
♦ Boundary scan is used to:

● Facilitate testing of board interconnect circuitry
● Access all chips on the board through a standard interface
● Facilitate shifting of data to and from devices on the board
● Provide access to internal chip test

(controls BIST and custom functions)
Design-for-Test: Scan and ATPG Training 7-19
December 2003

Advanced ATPG
Boundary Scan Architecture

Notes:

7-20 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Boundary Scan Architecture

♦ Added after boundary scan
insertion:

● Primary inputs and outputs
with boundary scan
cells connected into a
boundary scan register

● Boundary scan circuitry
● A test access port (TAP)

controller that controls the
operation of:

– Boundary scan
– Internal scan (optionally)

Primary Inputs

Primary Outputs

Before Boundary Scan

Core Logic

After Boundary Scan

Boundary
Scan Register

Boundary
Scan Cell

I/O
Pad

Core
Logic

TMS

TCK

TRST

TDI

TDO

T
A
P

B
Y
P
A
S
S

Core Logic
Design-for-Test: Scan and ATPG Training7-20
December 2003

Advanced ATPG
Connecting Boundary Scan with Internal
Scan

Notes:

7-21 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Connecting Boundary Scan with Internal Scan

♦ BSDArchitect lets you choose
several connection styles
based on your preferred style
for internal testing:

● Standalone mode
– Allows option to bypass the

TAP controller which allows
direct access to the scan pins
at the top level

– Adds extra circuitry

● Nostandalone mode
– Accesses internal scan only

through the TAP

Before Boundary scan insertion

sc_i sc_en

sc_o

POs

PIs

Core
Logic
Design-for-Test: Scan and ATPG Training 7-21
December 2003

Advanced ATPG
Connecting Boundary Scan with Internal
Scan (Cont.)

Notes:

7-22 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Connecting Boundary Scan with Internal Scan (Cont.)

♦ After boundary scan insertion

Standalone mode Notstandalone mode

Top- Level Logic

sc_in

sc_en

test_logic_reset
test
clock

TDI

BYPASS
BSR

from decoder

TDO

sc_out
Core
Logic

System

TAP
TMS
TCK
TRST

Top- Level Logic

sc_in

sc_en

test
clock

BYPASS
BSR

from decoder

TDO

sc_out

TAP
TMS
TCK
TRST

Core
Logic

System
Design-for-Test: Scan and ATPG Training7-22
December 2003

Advanced ATPG
Accessing Internal Scan Instructions

Notes:

7-23 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Accessing Internal Scan Instructions

♦ Internal scan circuitry is accessed through user-defined
instructions.

● INT_SCAN
– Connects Internal Scan Register between the TDI and TDO ports.

● MULT_SCAN
– Connects both the Boundary Scan Register (BSR) and the Internal

Scan Register in series between TDI and TDO.

TDI TDOInternal Scan Register

Boundary Scan Register
M
U
X

TDI
TDO

Internal Scan Register

Boundary Scan Register

M
U
X

M
U
X

Design-for-Test: Scan and ATPG Training 7-23
December 2003

Advanced ATPG
Connecting Internal Scan to Boundary
Scan Using BSDArchitect

Notes:

7-24 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Connecting Internal Scan to Boundary Scan Using
BSDArchitect

♦ Set internal connection mode with SET IScan Interface
command.

● Standalone
● Nostandalone

♦ Specify a name for the internal scan chain with ADD COre
Register command.

♦ Define internal scan instruction with ADD BScan Instruction
command.

● INT_SCAN
● MULT_SCAN

♦ Combine multiple scan chains into one scan chain with
CONnect IScan Chains command.

♦ Run boundary scan insertion.
♦ BSDArchitect automatically writes a test_setup procedure used

by FastScan.
Design-for-Test: Scan and ATPG Training7-24
December 2003

Advanced ATPG
Top Up ATPG

Notes:

7-25 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Top Up ATPG

♦ Used to supplement Logic
BIST patterns

♦ An ATPG test strategy to
improve ATPG efficiency

♦ Creates additional ATPG
patterns that:

● Test special circuitry: BIST,
TAP controller, multiple
cores, glue logic, and so on

● Produce higher overall test
coverage results

Pattern
 Counter Shift

Counter
Glue
Logic

PRPG

Compactor

Phase Shifter

MISR

BIST

TOP
C

o
re

 L
o

g
ic

T
A

P

sc_in

sc_out
TDOTDI

TMS
TCK

TRST

T
A

P

Boundary
Scan
Controller
Design-for-Test: Scan and ATPG Training 7-25
December 2003

Advanced ATPG
Top Up Patternsfrom BIST

Notes:

7-26 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Top Up Patterns From BIST

FastScan or
FlexTest

Design BIST or
Functional

Patterns

Fault List

Top-Up ATPG
FastScan or

FlexTest
Design-for-Test: Scan and ATPG Training7-26
December 2003

Administrator
Highlight

Advanced ATPG
Diagnostics

Notes:

7-27 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Diagnostics
♦ Determine why a chip is

faulty.
♦ Used to determine quality

problems and to prevent
their recurrence

♦ Involve both Automatic Test
Equipment (ATE) and
software-based diagnostics
tools.

● ATE records pattern
number and observation
points for all failing
patterns (failure file).

● FastScan diagnostics
identifies the fault(s)
associated with the defect.
Design-for-Test: Scan and ATPG Training 7-27
December 2003

Advanced ATPG
DiagnosticsFastScan

Notes:

7-28 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Diagnostics: FastScan

♦ Determines defect sites given:
● Original stuck-at pattern set
● Failing pattern set from ATE

♦ Better precision than standard fault dictionary approach
♦ Categorizes defects into:

● Single fault sites
● Multiple fault sites
Design-for-Test: Scan and ATPG Training7-28
December 2003

Advanced ATPG
Performing a Diagnosis

Notes:

7-29 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Performing a Diagnosis
♦ Store the failing pattern data in the

proper format.
♦ Set the pattern source to external and

specify the test pattern file name:
ATPG>SET PAttern Source
External <pattern_file>.

♦ Enter the DIAgnose FAilures
command, identifies the failure file and
the last pattern used from the pattern
file: ATPG>DIAgnose FAilures
<fails_file> -Last 286.

Failure candidates

ATE
Failure File

Setup Files

Test Patterns
Vendor format

Scan Inserted
Netlist

ATPG

FastScan
FlexTest

Failure ReportRun
Diagnostics

FastScan

ATPG
Library

ASCII-
Binary File
Design-for-Test: Scan and ATPG Training 7-29
December 2003

Administrator
Highlight

Advanced ATPG
Diagnostic Commands

Notes:

7-30 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Diagnostic Commands
Set Stuck-at fault

Read in pattern set

Diagnose failures
from failure file
Design-for-Test: Scan and ATPG Training7-30
December 2003

Administrator
Highlight

Advanced ATPG
DiagnosticsFailure File

Notes:

7-31 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Diagnostics: Failure File

 64 chain8 70
 65 chain8 70
 66 chain8 70
 70 chain8 70
 73 chain8 70
 76 chain8 70

Six
Failing

Patterns

Failing Pattern
Number

Failing Scan Chain Failing Scan Cell
Design-for-Test: Scan and ATPG Training 7-31
December 2003

Administrator
Highlight

Advanced ATPG
Diagnostics Report

Notes:

7-32 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Diagnostics Report

Defect Behavior is
Stuck-at-o

Hierarchical Path
to Failing Part

Failing Part is a Mux
Design-for-Test: Scan and ATPG Training7-32
December 2003

Administrator
Highlight

Advanced ATPG
Diagnostics Report (Cont.)

Notes:

7-33 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Diagnostics Report (Cont.)

FastScan Found 1 Defect

Explaining
 all Failures
Design-for-Test: Scan and ATPG Training 7-33
December 2003

Administrator
Highlight

Advanced ATPG
Diagnostics Issues

Notes:

7-34 • Design-for-Test: Scan and ATPG:
Advanced ATPG

Copyright © 2003 Mentor Graphics Corporation

Diagnostics Issues

♦ Good diagnostics depend upon:
● Completeness of the pattern set

– More patterns the better
– Save all failing patterns to a file

● Accuracy of fault model(s)
● Unsuitable for catastrophic fails

(>5% flops failing) [Kinra, 1998]
Design-for-Test: Scan and ATPG Training7-34
December 2003

Advanced ATPG
Lab: Advanced ATPG

Objectives

• Identify and black box undefined modules.

• Use MacroTest to test undefined modules and RAM.

• Apply top-up ATPG to improve test coverage.

• Save patterns.

• Diagnose tester failures.

• Generate a boundary scan testbench in the FlexTest table format.

o Use FlexTest to fault grade the boundary scan testbench.

o Use FastScan to top-up ATPG.

List of Exercises

• Exercise 17: MacroTest and Top-UP ATPG

• Exercise 18: Diagnosing Failure Files

• Exercise 19: Fault Grading Boundary Scan and Top-Up ATPG

Getting Started

1. Log in to your workstation if you are not already logged in.

2. Change to the $ATPGNW/lab 7/exercise_17 directory.
Design-for-Test: Scan and ATPG Training 7-35
December 2003

Advanced ATPG
shell> cd $ATPGNW/lab7/exercise_17

Exercise 17: MacroTest and Top-UP ATPG

In this exercise, you use FastScan to identify and black box undefined modules.
Next, you use MacroTest to apply functional patterns to the undefined modules to
generate scan patterns for that design circuitry. Then, you use FastScan to
generate additional patterns to top-up ATPG.

1. Invoke FastScan on the following circuit:

Design: gate_scan_8.v

Library: atpglib

Log file: results/ex_17.log

2. What three types of warnings appear in the Session Transcript window?

a. __

b. ___

c. ___

Which module(s) need to be defined as black boxes?

3. The initial setup commands for circuit set up and scan information for the
design are in the dofile atpg_8_scan.dofile.

Run the atpg_8_scan.dofile.

Note

Remember that for the exercises in this lab you use the libraries
found in the libraries_7_to_9 directory.
Design-for-Test: Scan and ATPG Training7-36
December 2003

Advanced ATPG
4. Black box undefined modules. For this exercise, use the following
command:

SETUP> add black box -instance /p1/cordic1/AddY/Add2 \
-keep_boundary

5. Report black boxes to make sure the correct one(s) were defined.

SETUP> report black box -all

6. Set up the FastScan MacroTest utility.

SETUP> setup macrotest

The FastScan MacroTest utility is useful for applying specific patterns that
test the internals of a macro. Although a macro is typically embedded logic
or memory, it also can be a disjoint set of internal sites or a single block of
hardware represented by an instance in HDL.

MacroTest reads test patterns from the functional test pattern file(s) you
provide and converts them into scan-based manufacturing test patterns —
thereby improving overall IC test quality.

7. Go to ATPG mode, ignoring any DRC warning messages.

8. Set up the Fault Universe:

Model: Single Stuck-At

Faults: Add Faults to ALL DESIGN OBJECTS

Turn On Fault Sampling: 10%

Leave the defaults for everything else.

Use dialogue boxes or commands to accomplish this. Whichever
method you use, the commands executed should be the same. View
them in the Session Transcript window.

What commands are executed?
Design-for-Test: Scan and ATPG Training 7-37
December 2003

Advanced ATPG
i. __

ii. __

9. Convert functional patterns for the picdram block into scan patterns.

ATPG> macrotest /p1/pic1/regs/picdram picdram.tbl

You can view the MacroTest patterns in the picdram.tbl file to observe their
format. Observe the messages in the session transcript area.

How many patterns were converted and stored?

10. Convert functional patterns for the Add2 black boxed instance (macro name
CLA0) into scan patterns.

ATPG> macrotest /p1/cordic1/AddY/Add2 cla.tbl -NO_L_h

The -NO_L_h optional switch specifies that {0,1} will be used to specify
{LO,HI} output values in the pattern files.

11. Observe the messages in the Session Transcript area.

How many patterns were converted and stored?

Multiple macros can be tested in parallel. If you use the
-Multiple_macro switch, you must include in the macro_filename all
macros you want to be simultaneously tested. You should first test each
macro individually in a separate run to ensure successful parallel testing.

12. Report statistics and fill in the lines (MacroTest) of the following tables:

Note

You can use the hierarchy browser to find the picdram instance and
automatically paste it into the Macrotest command.
Design-for-Test: Scan and ATPG Training7-38
December 2003

Advanced ATPG
Table 7-1. Report Statistics ATPG

Table 7-2.

Fault Class # faults (coll.) # faults (total)

FU (full) MacroTest:
Top-Up:
Opt. run:

UC (uncontrolled) MacroTest:
Top-Up:
Opt. run:

UO (unobserved) MacroTest:
Top-Up:
Opt. run:

DS (det_sim) MacroTest:
Top-Up:
Opt. run:

DI (det_imp) MacroTest:
Top-Up:
Opt. run:

PU (posdet_untestable) MacroTest:
Top-Up:
Opt. run:

MacroTest:
Top-Up:
Opt. run:

PT (posdet_testable) MacroTest:
Top-Up:
Opt. run:

MacroTest:
Top-Up:
Opt. run:

UU (unused) MacroTest:
Top-Up:
Opt. run:

MacroTest:
Top-Up:
Opt. run:

TI (tied) MacroTest:
Top-Up:
Opt. run:

MacroTest:
Top-Up:
Opt. run:
Design-for-Test: Scan and ATPG Training 7-39
December 2003

Advanced ATPG
Table 7-3. Report Coverage/Effectiveness ATPG

BL (blocked) MacroTest:
Top-Up:
Opt. run:

MacroTest:
Top-Up:
Opt. run:

RE (redundant) MacroTest:
Top-Up:
Opt. run:

MacroTest:
Top-Up:
Opt. run:

AU (atpg_untestable) MacroTest:
Top-Up:
Opt. run:

MacroTest:
Top-Up:
Opt. run:

Table 7-4.

Cov./Effect. # faults (coll.) # faults (total)

test_coverage
MacroTest:
Top-Up:
Opt. run:

MacroTest:
Top-Up:
Opt. run:

fault_coverage
MacroTest:
Top-Up:
Opt. run:

MacroTest:
Top-Up:
Opt. run:

atpg_effectiveness
MacroTest:
Top-Up:
Opt. run:

MacroTest:
Top-Up:
Opt. run:

test_patterns
MacroTest:
Top-Up:
Opt. run:

#basic_patterns
MacroTest:
Top-Up:
Opt. run:

Table 7-2.

Fault Class # faults (coll.) # faults (total)
Design-for-Test: Scan and ATPG Training7-40
December 2003

Advanced ATPG
13. Use the Save Patterns... button in the Button pane to save the patterns as an
ASCII file with the following characteristics:

File name: results/macro.pat

Pattern format: ASCII, with default ASCII options

i. Overwrite any existing files of the same name.

ii. Leave the defaults for everything else.

14. Top-up ATPG patterns using existing options. Note that the Fault Universe
is already set.

What command do you use? _____________

Use the report statistics command and the ATPG Run Statistics
window to fill in the second line of the tables above. (Top-Up)

15. Improve test coverage (optional activity).

a. If you have time, experiment with improving test coverage and see how
well you do. Suggest one approach to use:

macrotest_patterns
MacroTest:
Top-Up:
Opt. run:

simulated_patterns
MacroTest:
Top-Up:
Opt. run:

CPU_time (secs)
MacroTest:
Top-Up:
Opt. run:

Table 7-4.

Cov./Effect. # faults (coll.) # faults (total)
Design-for-Test: Scan and ATPG Training 7-41
December 2003

Advanced ATPG
b. Use the report statistics command and the ATPG Run
Statistics window to fill in the third line of the tables above. (Opt run)

16. Exit FastScan.

Exercise 18: Diagnosing Failure Files

In this exercise, you read in two different failure files from a tester and use
FastScan to diagnose the defect(s) resulting from these failures.

Getting Started

1. Log in to your workstation if you are not already logged in.

2. Change to the $ATPGNW/lab 7/exercise_18 directory.

shell> cd $ATPGNW/lab7/exercise_18

3. Invoke FastScan on the following circuit:

Design: gate_scan_8.v

Library: atpglib

Log file: results/ex_18.log

4. The initial setup commands for circuit set up and scan information for the
design are in the dofile atpg_8_scan.dofile.

Run the atpg_8_scan.dofile.

5. Black box undefined modules.

SETUP> add black box -auto

6. Report black boxes to make sure the correct one(s) were defined.

SETUP> report black box -all

What values are the ports tied to? _________________
Design-for-Test: Scan and ATPG Training7-42
December 2003

Advanced ATPG
7. Go to Fault Simulation mode, ignoring any DRC warning messages. Do
this by clicking on Done With Setup or by issuing a command.

What command is implemented? ________________________________

8. Load the FastScan test pattern file by selecting the Pattern Source box in the
Graphics pane. The Setup Pattern Source dialogue window opens.

Specify the Source of the Patterns: External Patterns

Source: fscan.pat

Pattern format: ASCII

Leave the defaults for the rest of the options.

What command does this set of options implement?

You use fault diagnostics on chips that fail during the application of the
scan test patterns to identify the precise location of a fault(s).

You perform diagnosis by first collecting the full set of failing pattern data
from the tester (failure file). FastScan uses this data during fault simulation
to determine the set of faults whose simulated failures most closely match
the actual failures.

Defects are categorized into single and multiple fault sites.

9. Load tester failure file.

FAULT> diagnose failure fail1.list

10. Observe the following messages in the session Transcript window and
answer the following:

a. How many failing patterns are there? ____________________

b. How many defects are needed to explain these failing patterns?
Design-for-Test: Scan and ATPG Training 7-43
December 2003

Advanced ATPG

c. How many fault candidates are there? ___________________

d. What are the pin_pathnames and stuck-at values of the fault candidates?

e. What are the names of the fault candidates?

 __

11. There may be more than one tester failure file, as in this case. Load and
diagnose the second tester failure file.

FAULT> diagnose failure fail2.list

12. Observe the following messages in the session Transcript window and
answer the following:

a. How many failing patterns are there? ____________________

b. How many defects are needed to explain these failing patterns?

c. How many fault candidates are there? ___________________

d. What are the pin_pathnames and stuck-at values of the fault candidates?

e. What are the names of the fault candidates?

 __

13. Sometimes you want to save a pattern file that has only a few patterns that
are failing but passes the majority of them. If the fault sites are scan cells,
you can mask the cells that fail and save the new pattern file.
Design-for-Test: Scan and ATPG Training7-44
December 2003

Advanced ATPG
In this step, we mask the three cells in the fault2.list file by adding cell
constraints. You should open fault2.list and study it so you understand this
next step.

a. Go back to system mode SETUP.

b. Type the following at the SETUP> prompt, or put them in a dofile that
runs during setup:

 SETUP> add cell cons chain6 169 OX
 SETUP> add cell cons chain6 171 OX
 SETUP> add cell cons chain6 172 OX

The argument OX tells FastScan to simulate the unloaded scan cell
value as unknown (unobservable).

c. Go to system mode ATPG.

i. Load the FastScan test pattern file by selecting the Pattern Source
box in the Graphics pane. The Setup Pattern Source dialogue
window opens.

Specify the Source of the Patterns: External Patterns

Source: fascan.pat

Pattern format: ASCII

Leave the defaults for the rest of the options.

ii. Add all the faults.

iii. Run

iv. Save the new pattern set in ASCII format to a file called fscan2.pat.

14. Exit FastScan.
Design-for-Test: Scan and ATPG Training 7-45
December 2003

Advanced ATPG
Exercise 19: Fault Grading Boundary Scan and Top-
Up ATPG

In this exercise, you use BSDArchitect to generate a default run of boundary scan
logic generation and save the testbench in the FlexTest table format for fault
grading. FlexTest will be used to fault grade the boundary scan logic testbench.
Then you use FastScan to generate additional patterns to top-up ATPG.

Getting Started

1. Log in to your workstation if you are not already logged in.

2. Change to the $ATPGNW/lab 7/exercise_19 directory.

shell> cd $ATPGNW/lab7/exercise_19

3. Invoke BSDArchitect.

shell> bsdarchitect gate_scan_8.v -verilog

4. Generate default boundary scan logic.

a. Click the Run button in the button pane.

b. If you are prompted to select an output format, select Verilog.

BSDArchitect is the Mentor Graphics boundary scan insertion tool.
BSDArchitect creates and interconnects boundary scan logic at the RTL
level, which is compliant with the IEEE 1149.1 and 1149.1a standards.

Boundary scan adds dedicated test circuitry to a chip. This circuitry
provides board-level control of IC I/O pins as well as IC test structures for
each chip with boundary scan. Boundary scan stitches control/observe cells
at the input and output ports of chips into a boundary scan chain.

In this activity, BSDArchitect is used to generate a default run of boundary
scan test logic for the Verilog design module.
Design-for-Test: Scan and ATPG Training7-46
December 2003

Advanced ATPG
5. Use the Save Results... button in the Button pane to save the patterns as a
FlexTest file with the following characteristics:

a. Tab: Patterns

Pattern format: FlexTest

Pattern File: flextest.pat

b. Tab: Boundary Scan Data

Directory: /results

i. Overwrite any existing files of the same name.

ii. Leave the defaults for everything else.

What commands are executed after these two saves?

c. View the files in the lab7/exercise_19/results directory:

Boundary scan-inserted netlist—bigchip_bscan.v
Testbench vectors in the FlexTest table format—flextest.pat

6. Exit BSDArchitect.
Design-for-Test: Scan and ATPG Training 7-47
December 2003

Advanced ATPG
Normally at this time you would synthesize the boundary scan RTL logic
created by BSDArchitect. Other sections of this lab utilize a synthesized
netlist.

7. Invoke FlexTest on the following circuit:

Design: incfile.v

Library: atpglib

Log file: results/ex_19.log

FlexTest is the Mentor Graphics all-purpose, sequential test generator. It is
optimized for non-scan and partial-scan designs. FlexTest uses a general
sequential ATPG algorithm called the BACK algorithm. The BACK
algorithm uses the behavior of a target fault to predict which primary output
(PO) to use as the fault effect observe point. Working from the selected PO,
it sensitizes the path backward to the fault site. After creating a test
sequence for the target fault, FlexTest uses a fault simulator to calculate all
the faults for the test sequence.

8. Set up the circuit for FlexTest.

a. Add clocks using the Clocks box in the Graphics pane.

i. Click the Manually Define button to define the following:

Primary Input = /tck; Off-state = 0

b. Set redundant logic checking to Off.

 SETUP> set redundancy identification off

This speeds up circuit analysis time for this evaluation.

9. Black box undefined modules.

This is the same command as the one used in FastScan. What is it?

Design-for-Test: Scan and ATPG Training7-48
December 2003

Advanced ATPG
10. Go to Fault Simulation mode, using either the command or by clicking
Done With Setup in the Graphics pane. Ignore any DRC warning messages.

11. Set up the Fault Universe:

Model: Single Stuck-At

Faults: Add Faults to ALL DESIGN OBJECTS

Turn On Fault Sampling: 10%

Leave the defaults for everything else.

What commands are executed?

__

__

Next, FlexTest reads in the testbench that you saved in the FlextTest table
format and fault grades the simulation vectors to produce an undetected
faults list.

12. Load the test pattern file by selecting the Pattern Source box in the Graphics
pane. The Setup Pattern Source dialogue window opens.

Specify the Source of the Patterns: External Patterns

Source: /results/flextest.pat

Pattern format: table

Leave the defaults for the rest of the options.

Note

Fault sampling is used for analysis purposes only. It should never be
used when you create production vectors.
Design-for-Test: Scan and ATPG Training 7-49
December 2003

Advanced ATPG
Look at the Session Transcript window. What command is executed?

How many test cycles are there? ________scan operations?_______
iddq measurements? _______

13. Fault simulate the FlexTest table format file using all existing/default
settings.

a. Click on Fault Simulation in the graphics pane.

b. When the Use Existing Settings or Customize? dialogue box opens,
click the Run With Existing Settings button.

i. When the FlexTest Run Options dialogue box opens, click Run.

ii. The FlexTest Fault Simulation Run Statistics dialogue box opens.
This simulation run takes several minutes.

iii. Click the Dismiss button after the run.

c. Use the FlexTest Fault Simulation Run Statistics window and the
report statistics command to fill in the following:

Table 7-5. Circuit Statistics

Note

Several cycles simulate before fault detection occurs because fault
detection does not occur until outputs are observed.

Table 7-6.

Circuit Statistics

of primary inputs

of primary outputs

of library design cells
Design-for-Test: Scan and ATPG Training7-50
December 2003

Advanced ATPG
Table 7-7. Fault List Statistics

of library leaf cells

of netlist primitives

of combinational
library primitives

of sequential library
primitives

of ram cells

of strongly connected
components

of simulation
primitives

Table 7-8.

Fault Class Uncollapsed Collapsed

Full (FU)

Det_simulation (DS)

Posdet_testable (PT)

Unused (UU)

Tied (TI)

Blocked (BL)

Uninitializable (UI)

Atpg_untestable (AU)

Unobserved (UO)

Uncontrolled (UC)

Table 7-6.

Circuit Statistics
Design-for-Test: Scan and ATPG Training 7-51
December 2003

Advanced ATPG
d. How many test cycles were generated? _________________________

e. How many test cycles were simulated? _________________________

f. How much CPU time was used? ______________________________

g. How many faults were detected? __________undetected? __________

14. Write a fault list.

FAULT> write faults results/flextest.faults -replace

15. Optional Activity: Assessing why test coverage is low.

a. If you have time, use the Hierarchy Browser to determine why the fault
coverage is so low. Remember, the testbench exercises the boundary
scan logic, not the test core.

b. Why is the coverage so low? _________________________________

16. Exit FlexTest.

17. Invoke FastScan on the following circuit:

Design: incfile.v

Fault coverage

Test coverage

ATPG Effectiveness

Table 7-8.

Fault Class Uncollapsed Collapsed
Design-for-Test: Scan and ATPG Training7-52
December 2003

Advanced ATPG
Library: atpglib

Log file: results/ex_19_fs.log

18. Complete the circuit setup using the following information. Use the
command line or various dialogue boxes in the Graphics pane to add scan
groups and chains.

a. Scan Group:

Group Name: grp1

Test Procedure File: exercise_19/atpg_8.testproc

b. Add the following Scan Chain definitions:

c. Set up the RAM with the following information:

 write controls = /ramclk Off-State = 0
 read controls = /ramclk Off-State = 0

d. Manually define the Clocks:

Table 7-9.

Chain
Name

Group Scan_In Scan_out

chain1 grp1 /scan_in1 /scan_out1

chain2 grp1 /scan_in2 /scan_out2

chain3 grp1 /scan_in3 /scan_out3

chain4 grp1 /scan_in4 /scan_out4

chain5 grp1 /scan_in5 /scan_out5

chain6 grp1 /scan_in6 /scan_out6

chain7 grp1 /scan_in7 /scan_out7

chain8 grp1 /scan_in8 /scan_out8
Design-for-Test: Scan and ATPG Training 7-53
December 2003

Advanced ATPG
/clk1 Off-State = 0
/clk2 Off-State = 0
/clk3 Off-State = 0
/clk4 Off-State = 0

e. Constrain the Primary Inputs to constant 0:

/trst
/tck

Why are these inputs held to 0?

f. Black box undefined modules, using the add black box -auto
command.

19. Go to ATPG mode, ignoring any DRC warning messages.

You now load the fault graded fault list from FlexTest into FastScan and
run top-up ATPG.

20. Set up the Fault Universe.

a. Click on Customize. The Setup Fault Universe dialogue box opens.

Fault Type/List tab: Load Existing Faults (Misc. Options area)

Load the Faults from the Following File: results/flextest.faults

b. Select Retain and Protect Faults in the Misc. Options dialogue window,
then select Retain Each Fault’s Current Classification.

What command is executed after you finish this step?

Design-for-Test: Scan and ATPG Training7-54
December 2003

Advanced ATPG
21. Dynamically compress patterns (remember this generates and compresses
patterns at the same time) using the Compression... button in the Button
pane or by typing the command at the command line prompt. In either case,
the same command is executed.

What command is this? ___

This step takes about 15 minutes.

a. Fill in the first line of the table. You may use the report
statistics command to obtain the information you need.

b. Click on the Report Statistics... button in the Button pane to open the
Report Statistics dialogue box.

i. Select — Show Statistics For: Hierarchical Instance at Path and
browse to the top level blocks in the design using the Design
Hierarchy Browser.

ii. Investigate the test coverage of the top level design blocks.

iii. Fill in the next three lines of the table with the details reported on the
top three hierarchical blocks.

Table 7-10.

Design
Block

Total # of
Faults

#test_pat-
terns

test_
cover-age

fault_
coverage

atpg_
effectiv.

Entire
Design
Design-for-Test: Scan and ATPG Training 7-55
December 2003

Advanced ATPG
iv. Provide an explanation of the coverage percentages reported on
these hierarchical blocks:

__

__

__

22. Exit FastScan.
Design-for-Test: Scan and ATPG Training7-56
December 2003

Advanced ATPG
Test Your Knowledge

1. What command is used to activate the FastScan MacroTest utility?

__

2. Does MacroTest create the functional test patterns?

__

3. When testing multiple macros, what is the recommended procedure?

__

4. What is a failure file?

__

5. Why did you save the boundary scan testbench in the FlexTest table
format?

__
Design-for-Test: Scan and ATPG Training 7-57
December 2003

Advanced ATPG
Lab Summary

Now that you have completed the Advanced ATPG lab, you should know how to
do the following:

• Use MacroTest to test undefined modules and RAM.

• Diagnose failure files.

• Use BSDArchitect to generate default boundary scan.

• Use BSDArchitect to save simulation vectors in the FlexTest table
format.

• Use FlexTest to fault grade and save simulation vectors.

• Use FastScan to generate additional patterns to top-up ATPG.

Design-for-Test: Scan and ATPG Training7-58
December 2003

Module 8
Troubleshooting DRC and

Simulation Mismatch

Objectives

Upon completion of this module, you will be able to:

• Debug design Rules Checking (DRC).

• Debug timing issues.

• debug simulation mismatches.
Design-for-Test: Scan and ATPG Training 8-1
December 2003

Administrator
Highlight

Troubleshooting DRC and Simulation Mismatch
Module Topics

Notes:

8-2 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Module Topics

This module addresses the following topics:
● The hierarchy browser
● Design block coverage
● ATPG untestable (AU) faults
● Fault categories
● DFTInsight
● Fault analysis
Design-for-Test: Scan and ATPG Training8-2
December 2003

Troubleshooting DRC and Simulation Mismatch
Troubleshooting Areas of Low Coverage

Notes:

8-3 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Troubleshooting Areas of Low Coverage

♦ Troubleshoot areas of low coverage:
● Assess the problem

– Determine the larger design blocks
– Determine which blocks are reporting low coverage
– Determine untestable fault categories

● Determine why ATPG classified faults as untestable
– Determine why faults are classified ATPG Untestable (AU)
– Determine why faults are classified as Unobserved (UO) and Uncontrolled (UC)

● Analyze the design fault by fault
– Use DFTInsight or applicable commands and options

● Debug the design
Design-for-Test: Scan and ATPG Training 8-3
December 2003

Troubleshooting DRC and Simulation Mismatch
Hierarchy Browser

Notes:

8-4 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Hierarchy Browser

♦ The hierarchy browser is used to:
● Display design hierarchy from the

top level to the lowest gate
● Select specific instances and pins

♦ To access the browser:
● From the GUI,

– Choose design browser > show

● Use OPEn HIerarchy Browser
command

Hierarchy tree pane

Hierarchy browser controls

Port interface pane
Design-for-Test: Scan and ATPG Training8-4
December 2003

Troubleshooting DRC and Simulation Mismatch
Assessing the Problem

Notes:

8-5 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Assessing the Problem

♦ Determine which blocks are reporting low coverage.
● Use REPort STatistics command.
 SETUP>REPort STatistics –Instance <instance_pathname>

Name of circuit block

20%

60% 80%

90%

99%

TOP/
Design-for-Test: Scan and ATPG Training 8-5
December 2003

Administrator
Highlight

Troubleshooting DRC and Simulation Mismatch
Assessing the Problem (Cont.)

Notes:

8-6 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Assessing the Problem (Cont.)
♦ Determine blocks with coverage issues.

● Use the hierarchy browser to display instance and pathname.
Design-for-Test: Scan and ATPG Training8-6
December 2003

Troubleshooting DRC and Simulation Mismatch
Assessing the Problem (Cont.)

Notes:

8-7 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Assessing the Problem (Cont.)
♦ Use the REPort STatistics command to determine instance

coverage and fault size.
Design-for-Test: Scan and ATPG Training 8-7
December 2003

Troubleshooting DRC and Simulation Mismatch
Assessing the Problem (Cont.)

Notes:

8-8 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Assessing the Problem (Cont.)

♦ Determine untestable fault categories:
● Use REPort TEstability Data command
 SETUP> REPort TEstability Data -Class AU
Design-for-Test: Scan and ATPG Training8-8
December 2003

Troubleshooting DRC and Simulation Mismatch
Faults Classified as ATPG Untestable

Notes:

8-9 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Faults Classified as ATPG Untestable

♦ ATPG untestable faults (AU):
● Typically, result of tied or blocked behavior, but not proven redundant.

– Constraints prevent FastScan from generating a pattern
to detect the fault.

● An AU fault is testable because it has not been proven untestable,
only undetected.
Design-for-Test: Scan and ATPG Training 8-9
December 2003

Troubleshooting DRC and Simulation Mismatch
Faults Classified as Undetectable

Notes:

8-10 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Faults Classified as Undetectable

♦ Undetected faults (aborted faults) cannot be proven
untestable or AU:

● Uncontrollable (UC)
– Faults that cannot be set to a known value at control point.

● Unobservable (UO)
– Faults that cannot be propagated to an observe point.

♦ Aborted faults are the result of exceeding an analysis limit.
Design-for-Test: Scan and ATPG Training8-10
December 2003

Troubleshooting DRC and Simulation Mismatch
Addressing Aborted Faults

Notes:

8-11 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Addressing Aborted Faults

♦ Addressing aborted faults:
● Determine if many aborted

faults exist

Statistics report

 #faults #faults

fault class (coll.) (total)

----------------------- ------- -------

FU (full) 4280 10387

----------------------- ------- -------

UC (uncontrolled) 1 1

UO (unobserved) 35 77

DS (det_simulation) 2904 7395

DI (det_implication) 370 455

PT (posdet_testable) 1 6

TI (tied) 30 60

BL (blocked) 27 56

RE (redundant) 59 210

AU (atpg_untestable) 853 2127

----------------------- ------- -------

test_coverage 78.64% 78.05%

fault_coverage 76.51% 75.60%

atpg_effectiveness 99.14% 99.22%

#test_patterns 523

#simulated_patterns 864

CPU_time (secs) 25.5

Design-for-Test: Scan and ATPG Training 8-11
December 2003

Troubleshooting DRC and Simulation Mismatch
Addressing Aborted Faults (Cont.)

Notes:

8-12 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

ATPG> run
// --
// Simulation performed for #gates = 51199 #faults = 7696
// system mode = ATPG pattern source = internal patterns
// --
// #patterns test #faults #faults # eff. # test process
// simulated coverage in list detected patterns patterns CPU time
// begin random patterns: capture clock = /clk1, observe point = MASTER
// 32 10.84% 7039 657 14 14 1.15 sec
 ...
// begin random patterns: capture clock = none, observe point = MASTER
// deterministic ATPG invoked with abort limit = 30
// --- ------ --- --- --- --- 9.14 sec
18/2120/3
// 512 63.19% 1653 297 31 185 9.60 sec
// --- ------ --- --- --- --- 9.94 sec

30/2120/4
// 544 66.23% 1337 304 32 217 10.37 sec...

The three additional fields are cumulative and broken down as follows:

 30/2120/4

Addressing Aborted Faults (Cont.)

♦ Set a higher abort limit if there are many blocks
SETUP> SET Abort Limit 300

 Use the number of reported
 aborted faults
 as the benchmark to determine
 abort limit

Aborted Faults

Redundant Faults

ATPG Untestable Faults
Design-for-Test: Scan and ATPG Training8-12
December 2003

Troubleshooting DRC and Simulation Mismatch
Bus Contention

Notes:

8-13 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Bus Contention

♦ Bus contention causes Uncontrollable (UC) faults.
♦ FastScan generates patterns to detect UC faults.

● If pattern simulates effectively, fault becomes Detected by
Simulation (DS).

● If pattern is rejected, fault remains UC and other patterns may
detect it.

● By default, patterns will be created without considering bus
contention. If pattern simulation results in bus contention, then
the pattern is rejected.

ATPG> report faults -class UNCONTROLLED
 1 UC /p1/fpu1/u4/U2711/Y
 0 EQ /p1/fpu1/u4/U2711/A1
 0 EQ /p1/fpu1/u4/U2711/A0
 0 EQ /p1/fpu1/u4/U3534/Y
 1 EQ /p1/fpu1/u4/U3534/A1
 1 EQ /p1/fpu1/u4/U3534/A0
 1 EQ /p1/fpu1/u4/U1302/Y
...
Design-for-Test: Scan and ATPG Training 8-13
December 2003

Troubleshooting DRC and Simulation Mismatch
Addressing Bus Contention

Notes:

8-14 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Addressing Bus Contention

♦ Avoid contention during pattern generation:
 SETUP> SET COntention Check ON -ATPG

● FastScan generates patterns that force buses to non-contention.
● If pattern does not detect fault, it becomes AU.

♦ Analyze what caused the contention:
 SETUP> ANAlyze Bus <bus_gate> -Prevention -Exclusivity

● Prevention- ability of the tool to attain a state of non-contention.
● Exclusivity- allows only one driver to force a signal into a bus.
Design-for-Test: Scan and ATPG Training8-14
December 2003

Troubleshooting DRC and Simulation Mismatch
Addressing Bus Contention: Types of
Contention

Notes:

8-15 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Addressing Bus Contention: Types of Contention

♦ Determine type of contention:
● E4 violations:

– Contention during procedures
– Often due to unknown values at bidi pins
– Usually fixed by force <bus> Z in test_setup and load_unload at event 0

● E10 violations are contention after the scan chain is loaded
● Use the SET DRc Handling E10 -ATPG command:

– Determines buses that do not cause contention
– Simplifies pattern generation to avoid bus contention
Design-for-Test: Scan and ATPG Training 8-15
December 2003

Troubleshooting DRC and Simulation Mismatch
Debugging Bus Contention

Notes:

8-16 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Debugging Bus Contention

♦ The following transcript is an example of a dofile used for
debugging bus contention:

ATPG> REPort DRC Rule E10

ATPG> ANAlyze Bus <E10_violation_gate> (…arguments)

ATPG> SET GAte Report Constrain

ATPG> REPort Gate <E10_violation_gate>
Design-for-Test: Scan and ATPG Training8-16
December 2003

Troubleshooting DRC and Simulation Mismatch
Fault-by-Fault AU Debugging: Report
Testability Data Command

Notes:

8-17 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Fault-by-Fault AU Debugging: Report Testability Data
Command

♦ Use REPort TEstability Data command to check:
● AU due to constraints or blockage
● Connectivity to or from potential problems
● TSD enables
● Non-scan cells
● Clock, set, and reset lines
● Wire gates
● RAMs
Design-for-Test: Scan and ATPG Training 8-17
December 2003

Troubleshooting DRC and Simulation Mismatch
Report Testability Data Command

Notes:

8-18 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Report Testability Data Command

♦ REPort TEstability Data command reports the following types
of data:

● Tied
● Blocked
● Constrained Values
● Forbidden Values
● Constrained blockages

ATPG> report testability data -class Atpg_untestable
// fault analysis summary of 1197 faults
// number faults tied by constraints = 379
// number faults blocked by constraints = 289
// number faults connected to nonscan_latch = 728
// number faults connected to RAM = 131
// number faults connected to clock/set/reset = 2
// number faults connected from clock = 42
// number faults connected from tiex = 13
// number faults connected from nonscan_latch = 38
// number faults unclassified = 236
Design-for-Test: Scan and ATPG Training8-18
December 2003

Troubleshooting DRC and Simulation Mismatch
TieX (D5)

Notes:

8-19 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

TieX (D5)

♦ A D5 violation occurs when memory elements are not
identified as part of a scan chain.

♦ Non-scan elements are modeled as tie-X, unless set to a
stable value.

♦ If too many tie-X gates, increase the clock sequential depth.
 SETUP> SET PAttern Type -Sequential 2
Design-for-Test: Scan and ATPG Training 8-19
December 2003

Troubleshooting DRC and Simulation Mismatch
Fault-by-Fault AU Debugging: Set Gate
Report Command

Notes:

8-20 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Fault-by-Fault AU Debugging: Set Gate Report Command

♦ Use SET GAte Report -COnstrain_Value command to
display constrained and forbidden values.

♦ The constrained value report provides three fields:
● CV
● FV
● B

 CV/FV/B “B” blocked no path to propagate fault, “-” not blocked

Forbidden Value

Constrained Value
Design-for-Test: Scan and ATPG Training8-20
December 2003

Troubleshooting DRC and Simulation Mismatch
Set Gate Report Command
-Constrain_Value

Notes:

8-21 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Set Gate Report Command -Constrain_Value
Design-for-Test: Scan and ATPG Training 8-21
December 2003

Troubleshooting DRC and Simulation Mismatch
Fault-by-Fault AU Debugging: Analyze
Fault Command

Notes:

8-22 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Fault-by-Fault AU Debugging: Analyze Fault Command

♦ Use ANAlyze FAult command to identify why a fault is not
detected.

♦ Performs fault analysis and displays circuitry in DFTInsight
(-Display).

♦ Will generate and fault simulate a pattern trying to detect a
specific fault.

ATPG> analyze fault /p1/pic1/U1839/B0 -stuck_at 0
// ---
// Fault analysis for /p1/pic1/U1839 (10267) input B0 (0) stuck at 0
// ---
// Current fault classification = AU (atpg_untestable)
// 1 potential observation points were identified:
// Potential observe point: MASTER-data /p1/pic1/porta_reg[0] (49319).
// Controllability justification was successful (data accessible using parallel_pattern 0).
// Pattern type: Basic_scan.
// No potential detection path problems were identified.
// Test generation performed using all observable detection points.
// Fault was detected at /p1/pic1/porta_reg[0]/ (49319) and fault effect
 is propagated from fanin gate 13203 (data accessible using parallel_pattern 1)
// Pattern type: Basic_scan.
Design-for-Test: Scan and ATPG Training8-22
December 2003

Troubleshooting DRC and Simulation Mismatch
Fault-by-Fault AU Debugging: Report
Test Stimulus Command

Notes:

8-23 • Design-for-Test: Scan and ATPG:
Troubleshooting Areas of Low Coverage

Copyright © 2003 Mentor Graphics Corporation

Fault-by-Fault AU Debugging: Report Test Stimulus
Command

♦ Use REPort TEst Stimulus command displays stimulus
necessary for specified conditions:

● Set
● Write
● Read

♦ Identifies how to sensitize scan chains blockage points

ATPG> repo gate 200
// /ix181 (200) AND
// A1 I (F:F) 192-/ix176/Y
// A0 I (F:F) 115-/modgen_and_6_ix5/Y
// "OUT" O (-:-) 202-
ATPG> report test stim -set /ix181/A0 1
// Time = 0
// Load 1 /ix334/SFFR (250), chain1 8
// Load 1 /ix324/SFFR (251), chain2 0
// Load 1 /ix314/SFFR (252), chain2 1
// Load 1 /ix304/SFFR (253), chain2 2
// Time = 1
Design-for-Test: Scan and ATPG Training 8-23
December 2003

Troubleshooting DRC and Simulation Mismatch
Lab: Troubleshooting Areas of Low Test
Coverage

Objectives

• Identify blocks of low test coverage.

• Determine untestable fault classifications.

• Use the hierarchy browser to locate instances within the design.

• Determine the cause of ATPG Untestable (AU) faults.

• Use DFTInsight to debug faults.

• Black box undefined design modules.

• Change the abort limit to improve ATPG effort.

• Select specific pattern types to improve test coverage.

List of Exercises

• Exercise 20: Troubleshooting Areas of Low Test Coverage

Getting Started

1. Log in to your workstation if you are not already logged in.

2. Change to the $ATPGNW/lab 8/exercise_20 directory.

shell> cd $ATPGNW/lab8/exercise_20

Note

Remember that for the exercises in this lab you use the libraries
found in the libraries_7_to_9 directory.
Design-for-Test: Scan and ATPG Training8-24
December 2003

Troubleshooting DRC and Simulation Mismatch
Exercise 20: Troubleshooting Areas of Low Test
Coverage

In this exercise, you do the following in order to troubleshoot areas of low test
coverage and to increase ATPG test coverage:

• Assess the problem:

o Determine which blocks are reporting low coverage.

o Determine untestable fault categories.

• Determine why ATPG classified faults as untestable:

o Determine why faults are classified ATPG Untestable (AU)
using the hierarchy browser.

• Analyze the design fault by fault:

o Use DFTInsight.

• Debug the design.

• Black box undefined modules.

• Improve ATPG effort and effectiveness:

o Increase the abort limit.

o Select specific pattern type(s) to improve test coverage.

1. Invoke FastScan on the following circuit:

Design: gate_scan_8.v

Library: atpglib

Command File: fs_8_sample.do

Log file: results/ex_20.log
Design-for-Test: Scan and ATPG Training 8-25
December 2003

Troubleshooting DRC and Simulation Mismatch
Note that we run the dofile at invocation. You can set up the design
using the Invocation dialogue box, or by executing shell commands.

What is the switch used for the dofile on the command line?

2. Three types of warnings appear while invoking the dofile. What are they?

Which module(s) need to be defined as black boxes?

3. Black box the undefined modules.

4. Go to ATPG mode, ignoring any DRC warning messages. You should be in
ATPG system mode.

During DRC, a total of 237 warnings are detected and the warning
messages are displayed in the session transcript area. You have two choices
at this time — either debug the DRCs and then do pattern generation or
proceed with pattern generation, assuming that the DRCs will not impact
test coverage too much.

5. Set up the Fault Universe.

a. Click on Customize. The Setup Fault Universe dialogue box opens.

Fault Type/List tab: Load Existing Faults (Misc. Options area)

Load the Faults from the Following File: fs_sample_faults.flt

b. Select — Retain and Protect Faults in the Misc. Options dialogue
window, then select Retain Each Fault’s Current Classification.
Design-for-Test: Scan and ATPG Training8-26
December 2003

Troubleshooting DRC and Simulation Mismatch
Click Ok at the bottom of each dialogue window.

What command is executed after you finish this step?

6. Generate patterns using all current settings.

a. Click the____button or type _____ at the command line prompt.

b. Fill in the following table after the current run:

Table 8-1. Report Statistics ATPG

Table 8-2.

Fault Class # faults (coll.) # faults (total)

FU (full)

UC (uncontrolled)

UO (unobserved)

DS (det_sim)

DI (det_imp)

PU (posdet_untestable)

PT (posdet_testable)

UU (unused)

TI (tied)

BL (blocked)

RE (redundant)

AU (atpg_untestable)
Design-for-Test: Scan and ATPG Training 8-27
December 2003

Troubleshooting DRC and Simulation Mismatch
Table 8-3. Report Coverage/Effectiveness ATPG

7. Use the Report... button in the FastScan ATPG Run Statistics window to
find out more about ATPG untestable (AU) faults.

a. Select the Testability tab.

i. Click on the Select... button in the Fault Class (code or name) for
Testability Analysis area. The Fault Class Choices dialogue box
opens.

ii. Select AU. Click OK.

iii. Click on the Generate Report button in the Reported Data area.

You have generated a testability analysis report of all the AU faults in the
design. Note that a large number of faults are connected to non-scan
latches.

What would you do to test these faults connected to non-scan latches?

__

b. Select the Faults tab.

i. Display the statistics for the fpu1 instance.

a. Click on the Show Statistics... button in the Reported Data area.

Table 8-4.

Total # of
Faults

#test_pat. test_cov. fault_cov. atpg_effect.

Note

This report can be generated using the command report
testability data -class au
Design-for-Test: Scan and ATPG Training8-28
December 2003

Troubleshooting DRC and Simulation Mismatch
b. Select the option Hierarchical Instance at Path and browse the
bigchip hierarchy to find it. (Hint: Look under p1)

c. Select fpu1 when you find it. The path should be displayed in the
Selected Instance(s) field of the Design Hierarchy Browser.

d. Click on the Report button.

What is the full pathname for the fpu1 instance?

__

The test coverage for the fpu1 instance is ___________________

The number of AU faults for instance fpu1 is________________

What command would you use to report on AU faults for the fpu1
instance?___

So far in this lab activity you have located the instances in the design
that are reporting low test coverage. Next, you are going to
determine why AU classified faults are untestable.

c. Determine why faults are classified as ATPG Untestable (AU).

i. Click on the Select... button in the Fault Class (Code or Name) area.
When the Fault Class Choices dialogue box opens, select AU.

ii. Click on the Browse Hierarchy... button in the Options area. When
the Design Hierarchy Browser opens, select the fpu1 instance.

iii. Click on the Report Faults button in the Reported Data area.

Now there should be a list of AU faults in the fpu1 module visible in
the Reported Data area.

iv. Somewhere in the list is the pathname fpu1/U1954/A1. Browse for it
in the list.
Design-for-Test: Scan and ATPG Training 8-29
December 2003

Troubleshooting DRC and Simulation Mismatch
Click the LMB on /p1/fpu1/U1954/A1—this is entered
automatically into the Fault entry box (or type /p1/fpu1/U1954/A1
into the Fault entry box, especially if you have a difficult time
finding it by browsing.)

v. Click on the Analyze button.

What behavior is blocking the fault being tested?

vi. Now analyze the fault at /p1/fpu1/opa_r1_reg[29]/D. (It is easier to
type this node directly into the Fault field.)

What behavior is blocking the fault being tested?

vii. Close the Results & Analysis dialogue box.

viii. Close the FastScan ATPG Run Statistics dialogue box.

8. Using the results from the above analysis might be sufficient in order to
understand how to fully test them, but it also might be useful to graphically
analyze the faults. This is done through DFTInsight.

a. Click on the Open DFTInsight button in the Button pane.

b. Click on the Display > Additions... menu item. The Make Additions to
the Display dialogue box opens.

i. Type /p1/fpu1/opa_r1_reg[29] into the Instance Names, Gate IDs or
Pin Pathname entry box and click the Add button.

ii. Click OK.

c. Click the LMB on the E-Z Trace button.
Design-for-Test: Scan and ATPG Training8-30
December 2003

Troubleshooting DRC and Simulation Mismatch
i. Click the LMB on the flip-flop. This action traces back one level of
inputs.

What inputs do you see? _________________________________

ii. Click the LMB on the scan input (SI) of opa_r1_reg[29].

What is the SI input connected to? __________________________

iii. Click the RMB on the original scan flip-flop: opa_r1_reg[29]. This
action traces forward to all outputs.

What does output Q connect to? ____________________________

E-Z Trace

Delete
All
Design-for-Test: Scan and ATPG Training 8-31
December 2003

Troubleshooting DRC and Simulation Mismatch
What does output QB connect to? ___________________________

iv. Click the RMB on the inverter /p1/fpu1/U1219.

What gate does the inverter connect to? _______________________

When you observe the Q output of opa_r1_reg[29], you notice that it
is not connected to any other gate. However, this is not what is
causing the fault to be undetected. In order for input D to report an
AU fault, both Q and QB must not be connected anywhere. If either
are connected, as QB is, then the fault is detectable. The cause of the
AU fault on this register is due to tieX behavior. Refer to Chapter 4
"Understanding Testability Issues" in the Scan and ATPG Process
Guide for understanding how and why tieX is inserted into circuitry.

d. Clear the DFTInsight display using the Delete All button, or the menu
option Display > Deletions > All.

9. Now examine how many non-scan cells there are in the circuit.

a. Click on the Report Circuit... button in the FastScan Button pane.

What dialogue box opens? ______________________________

i. Click on the Report NonScan Cells tab and then click on the
Generate Report button.

Note that there are quite a few flip-flops from the fpu1 module listed
as non-scan cells.

ii. Close the Report Circuit dialogue box.

10. Next we investigate the register that ‘blocked’ the fault on
/p1/fpu1/U1954/A1 using DFTInsight. (Refer to section 7.c.iv)

a. Add the register /p1/fpu1/fract_denorm_reg[46] into DFTInsight.

b. Investigate backwards from the register to find why the fault is blocked.
If you see nothing, try setting the design level to primitive. (Setup >
Design Level > Primitive)
Design-for-Test: Scan and ATPG Training8-32
December 2003

Troubleshooting DRC and Simulation Mismatch
What is the difference between the Design Levels? ________________

__

What caused the fault to be blocked? __________________________

c. Exit DFTInsight.

11. You have assessed the problems with the design. You know where the areas
of low test coverage are located and you know why faults have been
classified as ATPG Untestable (AU).

You used DFTInsight, the graphical debugging tool, to analyze the design
fault by fault.

The next step is to debug the design by editing the netlist. We fix a lot of the
problems in the following sections.

a. Edit the netlist gate_scan_8.v using an editor of your choice. You can
run vi from the ATPG prompt if you want:

 ATPG> vi gate_scan_8.v

b. Correct the error. Look for opa_r1_reg[29] and see if you can isolate
and fix the problem.

What did you to fix the problem? ______________________________

c. Remove the problem with the module that needed to be defined as a
black box.

What did you do to fix the problem?

Design-for-Test: Scan and ATPG Training 8-33
December 2003

Troubleshooting DRC and Simulation Mismatch

Do not spend too much time trying to figure out how to edit the netlist.
The edited netlist with the bugs removed —1_netlist.v is in the
directory.

You are encouraged to compare your editing efforts against the
previously edited netlist and make corrections, if any, to your netlist.

d. Save the newly edited Verilog netlist as new_netlist.v in the results
directory and exit FastScan.

12. Invoke FastScan on the following circuit:

Design: new_netlist.v

Library: atpglib

Command File: fs_8_sample.do

Log file: results/ex_20a.log

13. Go to ATPG mode. Ignore DRC warnings.

14. Set up the Fault Universe, adding faults from the external fault list,
fs_sample_faults.flt, retaining each fault’s classification.

15. Generate Patterns.

a. What test coverage did you achieve?____________________________

b. During ATPG FastScan reported that some faults were aborted.

i. How many? ________________________

ii. What is the current abort limit? _____________

The test coverage percentage has improved, but your company requires the
test coverage to be in the 90s.
Design-for-Test: Scan and ATPG Training8-34
December 2003

Troubleshooting DRC and Simulation Mismatch
During ATPG, FastScan reported that some faults were aborted. In the next
activity, you raise the abort limit to improve ATPG effort.

16. Raise the abort limit to improve ATPG effort.

a. Click on Change Settings... in the FastScan ATPG Run Statistics
dialogue box to open the Setup for Test Pattern Generation dialogue
box.

i. Click on the ATPG Effort/Process tab. In the Fault Detection Effort
area, type “500” into the Combinational ATPG Abort Limit field.

ii. Click OK.

What commands were written in the Session Transcript window?

a. __

b. __

b. Click on the Run button to generate more patterns in addition to those
already generated.

What test coverage was achieved in this run? ____________________

How many faults were aborted this time? ________________________

c. Click the Run button again in the FastScan ATPG Run Statistics
dialogue box.

Observe that there still are a number of faults aborted.

17. You should have noticed as the software moved from Setup mode to ATPG
mode that Circuit Learning/DRC checking identified a RAM in the design.
If you did not notice it, scroll up in the Session Transcript window and
observe it.

Additionally, the dofile has read and write controls defined for RAM. The
next logical step to improve coverage is to use RAM sequential testing.
Design-for-Test: Scan and ATPG Training 8-35
December 2003

Troubleshooting DRC and Simulation Mismatch
a. Click on Change Settings... in the FastScan ATPG Run Statistics
dialogue box again. When the Setup for Test Pattern Generation
dialogue box opens, turn on RAM Sequential Patterns in the ATPG
Effort/Process tab.

i. Click on the RAM Sequential Patterns button in the ATPG
Algorithm area.

ii. Click OK.

iii. What commands were written in the Session Transcript window?

iv. __

v. __

b. Click on the Run button in the FastScan ATPG Run Statistics dialogue
box.

c. Report Statistics and fill in the following tables:

Table 8-5. Report Statistics ATPG

Table 8-6.

Fault Class # faults (coll.) # faults (total)

FU (full)

UC (uncontrolled)

UO (unobserved)

DS (det_sim)

DI (det_imp)

TI (tied)

BL (blocked)

RE (redundant)

AU (atpg_untestable)
Design-for-Test: Scan and ATPG Training8-36
December 2003

Troubleshooting DRC and Simulation Mismatch
Table 8-7. Report Coverage/Effectiveness ATPG.

19. Exit FastScan.

Table 8-8.

Total #
of Faults

#test_pat #basic_
patterns

#ram_
seq_pat

test_cov. fault_cov
.

atpg_eff.
Design-for-Test: Scan and ATPG Training 8-37
December 2003

Troubleshooting DRC and Simulation Mismatch
Test Your Knowledge

1. List two steps you would take to assess problems with a design.

__

2. What tool is useful for locating fault locations?

__

3. What tool is useful for analyzing a design fault by fault?

__

4. What can you do to increase ATPG effort?

__

5. What can you do to improve ATPG effectiveness?

__
Design-for-Test: Scan and ATPG Training8-38
December 2003

Troubleshooting DRC and Simulation Mismatch
Lab Summary

Now that you have completed the Advanced ATPG lab, you should know how to
do the following:

• Identify blocks of low test coverage.

• Determine untestable fault classifications.

• Use the Hierarchy browser to locate instances.

• Determine the cause of ATPG Untestable faults.

• Black box undefined design modules.

• Change the abort limit.

• Select patterns.

Design-for-Test: Scan and ATPG Training 8-39
December 2003

Troubleshooting DRC and Simulation Mismatch
Design-for-Test: Scan and ATPG Training8-40
December 2003

Module 9
Troubleshooting DRC and

Simulation Mismatch

Objectives

Upon completion of this module, you will be able to:

• Debug Design Rules Checking (DRC).

• Debug timing issues.

• Debug simulation mismatches.
Design-for-Test: Scan and ATPG Training 9-1
December 2003

Troubleshooting DRC and Simulation Mismatch
Module Topics

Notes:

9-2 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Module Topics

This module addresses the following topics:
♦ Common DRC violations

● E4
● C3
● C6
● D5
● D6
● T3

♦ Test benches
♦ Clock skew issues
♦ Simulation mismatches
Design-for-Test: Scan and ATPG Training9-2
December 2003

Troubleshooting DRC and Simulation Mismatch
Analyzing DRC Violations: Commands

Notes:

9-3 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Analyzing DRC Violations: Commands

♦ Commands and options used in Setup mode to analyze DRC
violations:

● ATPG_analysis option of SET DRc Handling command to fully
analyze DRCs:

– C1, C3, C4, C5, D6, E10, E11, and E12

● SET GAte Level to specify the level of information
reported/displayed

– design cell, low design, or primitive

● SET GAte Report to specify the type of information reported
– Trace (simulates shift of scan chain)
– Error (reports values for error condition)
– Drc_pattern (access data during any procedure)
– Normal (default)
– Parallel_pattern (capture cycle value for specified pattern)
Design-for-Test: Scan and ATPG Training 9-3
December 2003

Troubleshooting DRC and Simulation Mismatch
Analyzing DRC Violations: Report Gates
Command

Notes:

9-4 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Analyzing DRC Violations: Report Gates Command

♦ REPort Gates reports additional information for troubleshooting
● Specific gate

– SETUP> REPort GAtes <instance_number>

● All gates of a specific logic type
– SETUP> REPort GAtes -Type gate_type . . .

● A histogram of all gate types
– SETUP> REPort GAtes -Type Histogram

● A path between two gates
– SETUP> REPort GAtes -Path <gate1_ID#> <gate2_ID#>

● The first input of a gate (back tracing)
– Reports the gate connected to the first input listed of the previously reported

gate
– SETUP> B

● Reporting on the first fanout (forward tracing)
– SETUP> F

To use “B” or “F”, the gate level must be set to primitive
SETUP> SET Gate Level Primitive
Design-for-Test: Scan and ATPG Training9-4
December 2003

Troubleshooting DRC and Simulation Mismatch
DRC Violations: E4 - Procedure (Bus
Contention)

Notes:

9-5 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

DRC Violations: E4 - Procedure (Bus Contention)

♦ Bus contention occurs when tri-state drivers have conflicting
values when driving the same net.

● Any two inputs at values X & X, 0 & X, 1 & X, and 1 & 0

♦ E4 violations occur when bus contention occurs during
scan procedure.

● Example:
– Shift
– Load_unload
Design-for-Test: Scan and ATPG Training 9-5
December 2003

Troubleshooting DRC and Simulation Mismatch
Debugging E4 Violations

Notes:

9-6 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Debugging E4 Violations

♦ Use DFTInsight
● Make E4 violations occur as an error from within FastScan

SETUP> SET DRc Handling E4 Error
SETUP> SET System Mode ATPG // performs DRC checking

● Use ‘analyze drc’ from within DFTInsight
● Trace back through the design and correct the problem

♦ Optionally, use the REPort GAtes command
SETUP> SET DRc Handling E4 Error

SETUP> SET GAtes Report Error_pattern

SETUP> SET SYstem Mode ATPG

SETUP> REPort GAtes <instance_number>

SETUP> SET GAte Level Primitive

SETUP> B

Trace back to locate the problem

HINT: B 2 will back trace on the second
input of the last gate reported
Design-for-Test: Scan and ATPG Training9-6
December 2003

Troubleshooting DRC and Simulation Mismatch
E4 Contention on Bidirectionals

Notes:

9-7 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

E4 Contention on Bidirectionals

♦ Bidirectionals fail when bus contention occurs between the
chip bidi outputs and the tester signal that drives the input of
the chip bidi.

♦ By default the tester will drive an X into the bidi.
♦ Do the following to force the tester to drive a Z:

● Edit test_setup and load/unload procedures.
force <signal_name> Z;
Design-for-Test: Scan and ATPG Training 9-7
December 2003

Troubleshooting DRC and Simulation Mismatch
Clocks

Notes:

9-8 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Clocks

♦ Clocks:
● A primary input (PI) that changes the state of a sequential element.

– Includes set and reset inputs

● The transition of the clock from OFF to ON is the leading edge
(LE) of the clock.

● The transition of clock from ON to OFF is the trailing edge
(TE) of the clock.

♦ Example:

SETUP>ADD CLock 0 CLK1

Off state

Off state
Clock Cycle

LE TE

CLK1
Design-for-Test: Scan and ATPG Training9-8
December 2003

Troubleshooting DRC and Simulation Mismatch
Clock Cones

Notes:

9-9 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Clock Cones

♦ Clock cone:
● A gate pin is defined as being in the clock cone if there is a path

through combinational logic gates from the clock pin to the
output pin.

● Pin “a” is in the “clock cone” of CLK.

● Display clock cone with SET GAte Report -Clock <clock>.

Combinational logic
allowed

CLK c Ccc
a

Design-for-Test: Scan and ATPG Training 9-9
December 2003

Troubleshooting DRC and Simulation Mismatch
Effect Cones

Notes:

9-10 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Effect Cones

♦ Effect cone:
● A signal is defined as being in the effect cone if there is a

sequential element between the output pin and the clock pin.
● Pin “b” is in the “effect cone” of CLK.

D Q

CLK
DFFc

E
b

Design-for-Test: Scan and ATPG Training9-10
December 2003

Troubleshooting DRC and Simulation Mismatch
Both Cones

Notes:

9-11 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Both Cones

♦ Both cones:
● An output pin that is in both the clock cone and the effect cone.
● Pin “j” is in both the “clock” and “effect cone” of CLK.

D Q

CLK
DFFc

Clock cone

Effect cone

E

C

B j
Design-for-Test: Scan and ATPG Training 9-11
December 2003

Troubleshooting DRC and Simulation Mismatch
Clock Rules: C3

Notes:

9-12 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Clock Rules: C3

♦ C3 clock rules:
● Designs that contain both leading edge and trailing edge flops

have the potential for C3 DRC violations.
– Data must not be captured into a FF on a clock’s trailing edge.

D Q

D Q

D Q

C3 violation

Source of C3 violation

Off state of CLK1
is 0

CLK1

Leading Edge FF

Trailing Edge FF
Design-for-Test: Scan and ATPG Training9-12
December 2003

Troubleshooting DRC and Simulation Mismatch
DRC Violations: C3

Notes:

9-13 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

DRC Violations: C3

♦ A C3 violation occurs if one of the following is true:
● The output of a leading edge triggered FF is connected to the D

input of a trailing edge triggered FF
● RAM Write input is in the clock cone and a data-in or address

input of the Write port is in the effect cone
● RAM Read is in the clock cone and an address input of the

associated Read port is in the effect cone

D Q D QCombinational
Logic
Design-for-Test: Scan and ATPG Training 9-13
December 2003

Troubleshooting DRC and Simulation Mismatch
FastScan Event Simulation

Notes:

9-14 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

FastScan Event Simulation

♦ By default, FastScan simulates a single event per test cycle:
● Clocks have pulsed
● Combinational logic is updated based on state element

values from previous clock pulse
● State elements have not changed
● Data is captured on one clock edge
● Simulation data is not updated between clock edges

One clock pulse to update
state elements

Ordinary PIs

Clock PIs

POs

Measure
Design-for-Test: Scan and ATPG Training9-14
December 2003

Troubleshooting DRC and Simulation Mismatch
Setting Event Simulation

Notes:

9-15 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Setting Event Simulation

♦ Default event simulation is not appropriate if there are
C3/C4/C6 DRC violations.

♦ Do the following to change event simulation:
SETUP> SET SPlit Capture_cycle ON // simulates 2 events in clock pulse

 // Used to properly simulate and avoid
 C3 and C4 problems

Ordinary PIs

Clock PIs

POs

Simulate LE of clock Simulate TE of clock

Measure
Design-for-Test: Scan and ATPG Training 9-15
December 2003

Troubleshooting DRC and Simulation Mismatch
Handling C3 Violations

Notes:

9-16 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Handling C3 Violations

♦ Capture data for LE and TE flip-flops between clock edges
SETUP> SET SPlit Capture_cycle ON

♦ The SET SPlit Capture_cycle command cannot be used with
RAM_sequential patterns

● Use multi-load patterns
SETUP> SET MUltiple Load on

SETUP> SET PAttern Type -Sequential 4
Design-for-Test: Scan and ATPG Training9-16
December 2003

Troubleshooting DRC and Simulation Mismatch
Clock Rules: C6

Notes:

9-17 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Clock Rules: C6

♦ C6 clock rules:
● A clock may not affect data that it is capturing.
● A rule violation occurs when a clock input of a scannable element

and its data line are in the same cone.

● Default is to simulate the D input with clock value at the ON state.
– Default simulation will capture a 1 in this case.

D Q
1

c

C or B

c

C6 violation
Design-for-Test: Scan and ATPG Training 9-17
December 2003

Troubleshooting DRC and Simulation Mismatch
Handling C6 Violations

Notes:

9-18 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Handling C6 Violations

♦ Handling a C6 violation:
 SETUP> SET CLock_off Simulation ON

● Enables the simulation of the event where all clock primary
inputs are at their “off” value

● Forces PIs
● Maintains previous state element values

● Simulation will capture a 0 in this case
● Not compatible with RAM sequential

D Q
1

0

Design-for-Test: Scan and ATPG Training9-18
December 2003

Troubleshooting DRC and Simulation Mismatch
Data Rules: D5

Notes:

9-19 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Data Rules: D5

♦ All memory elements must be scannable.
● A D5 violation occurs when memory elements are identified as

not belonging to a scan chain.
● The default handling is a warning.

– Failure to satisfy this rule results in loss of test coverage.

● Applies to both latches and FFs.
– For latches, the D6 rule will also apply.
Design-for-Test: Scan and ATPG Training 9-19
December 2003

Troubleshooting DRC and Simulation Mismatch
Data Rules: D6

Notes:

9-20 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Data Rules: D6

♦ All non-scan latches must behave as transparent latches.
♦ A D6 violation occurs if a latch fails one of the following

conditions:
● If a latch creates a feedback path, that path must be broken.
● Latches must have a propagable path to an observe point.
● Latches must pass a value when all clocks are off.
● All clock, set, and reset inputs must be at determinate state when all

clocks are off.
● Latches must have only one set/reset/clock input when all defined

clocks are off.
Design-for-Test: Scan and ATPG Training9-20
December 2003

Troubleshooting DRC and Simulation Mismatch
Handling D5 and D6 Violations

Notes:

9-21 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Handling D5 and D6 Violations

♦ Handling D5 and D6:
● Enable clock sequential ATPG
 SETUP> SET PAttern Type -Sequential 2 (or more)
Design-for-Test: Scan and ATPG Training 9-21
December 2003

Troubleshooting DRC and Simulation Mismatch
Scan Chain Trace Rules: T3

Notes:

9-22 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Scan Chain Trace Rules: T3

♦ Tool traces from scan output pin to scan input pin using load-
unload and shift procedures

♦ An unknown (x) is shifted backwards from scan-out.
● Some circuit values are learned “tied” from test_setup, pin

constraint, and other procedures.
● Follows sensitized path backward.
● Simulates shift to back trace through sequential gates.

♦ An improperly sensitized gate in the scan path will cause an
error condition (T3).

SI Q SI Q

Combinational
Logic

Scan_out

Scan cell 0Scan cell 1

T3 here

010 010

XXXXXX

XXX

XXXXXX

Simulation of one shift operation
Design-for-Test: Scan and ATPG Training9-22
December 2003

Troubleshooting DRC and Simulation Mismatch
Common Causes of T3 Errors

Notes:

9-23 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Common Causes of T3 Errors

♦ Common causes of T3 errors:
● Scan Enable (SE) controlled through TAP or state machine not

initialized with test_setup and constraints
● Set or reset not properly initialized
Design-for-Test: Scan and ATPG Training 9-23
December 2003

Troubleshooting DRC and Simulation Mismatch
Scan Chain Trace Rules: T5

Notes:

9-24 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Scan Chain Trace Rules: T5

♦ T5 trace rule:
● During the shift procedure, scan clocks should pulse and

set/resets should be disabled.

SI Q SI Q SI Q

Combinational
Logic

SET

XXX

XXX

CLK

SO

010

Good

Bad, T5 violations
Design-for-Test: Scan and ATPG Training9-24
December 2003

Troubleshooting DRC and Simulation Mismatch
Debugging T3 and T5 Violations

Notes:

9-25 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Debugging T3 and T5 Violations

♦ Use DFTInsight to back trace on problem value.
♦ Optionally, use the REPort Gates command.

● SETUP> SET TRace Report ON
– FastScan prints out all the gates it traces through when it traces the

scan chains.

● SETUP> SET GAte Report Trace
– FastScan prints out the data for the “shift” procedure.
– Optionally, use the SET Gate Report Drc shift command.

● SETUP> SET SYstem Mode ATPG

● SETUP> REPort GAtes <instance_number>
– Determine where scan chain is blocked.

● SETUP> B
– Trace back the blocking value through the design and correct the

problem(s).
Design-for-Test: Scan and ATPG Training 9-25
December 2003

Troubleshooting DRC and Simulation Mismatch
Testbenches

Notes:

9-26 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Testbenches

♦ FastScan provides serial and parallel Verilog or VHDL
testbenches.

♦ They drive time-based simulations to verify FastScan’s expected
values against the simulated values.

♦ When these values do not match, there is a simulation mismatch:
● Functional discrepancies.
● Timing issues (FastScan is event-driven).
Design-for-Test: Scan and ATPG Training9-26
December 2003

Troubleshooting DRC and Simulation Mismatch
Serial Testbench

Notes:

9-27 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Serial Testbench

♦ In the serial testbench, the scan chain is operated like a tester:
● Data is shifted serially through the chain.
● Takes a long time to simulate test vectors.

♦ Reports the scan output pin and time of mismatch.
♦ Normal practice is to simulate 2 or 3 serial patterns.
 ATPG> SAVe PAtterns –Verilog –Serial -Sample 2
Design-for-Test: Scan and ATPG Training 9-27
December 2003

Troubleshooting DRC and Simulation Mismatch
Parallel Testbench

Notes:

9-28 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Parallel Testbench

♦ The parallel testbench simulator has access to the internal
nodes in the design:

● Data is loaded in parallel.
– Data is directly “forced” at scan cell inputs.
– Shift procedure is applied once.
– Loads and unloads the entire scan chain in one clock cycle.

● Reduced simulation time.

♦ Reports the following:
● Time.
● Pattern number
● Name/location of scan cell (or PO) where mismatch is observed.

♦ Normal practice is to simulate all parallel patterns
Design-for-Test: Scan and ATPG Training9-28
December 2003

Troubleshooting DRC and Simulation Mismatch
Debugging Simulation Mismatches in
FastScan

Notes:

9-29 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Debugging Simulation Mismatches in FastScan

Start

All
Scan Tests
Fail?

Parallel
Patterns Fail,
Serial Pass?

Y
Clock Skew
Problem in
Scan Path

Serial
Chain Test
Fails?

N

N

N

Y
Timing Violations

Library Problems

DRC Issues

When, Where, and How Many Mismatches?

AppNote 3002
Debugging Simulation
 Mismatches in FastScan
Design-for-Test: Scan and ATPG Training 9-29
December 2003

Troubleshooting DRC and Simulation Mismatch
DRC Violations: Simulation Mismatches

Notes:

9-30 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

DRC Violations: Simulation Mismatches

♦ DRC violations that are most likely to cause simulation
mismatches are:

● C3
● C4
● C6

♦ If mismatches occur, first check if DRCs were reported.
Design-for-Test: Scan and ATPG Training9-30
December 2003

Troubleshooting DRC and Simulation Mismatch
When, Where, and How Many
Mismatches

Notes:

9-31 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

When, Where, and How Many Mismatches

♦ If DRC violations are not the problem, check the following:
● Mismatches reported on POs, scan cells, or both?

– Mismatches on scan cells are related to capture ability and timing.
– Mismatches on POs related to an incorrect value loaded into scan cells.

● Mismatches reported on a few or most of the patterns?
– Mismatches on a few patterns indicate a problem with certain patterns
– Mismatches on most patterns indicate a more generalized problem.

● Mismatches observed on a few pins/cells or most pins/cells?
– Mismatches on a few pins/cells indicate a problem related to a few specific

instances or one part of the logic.
– Mismatches on most pins/cells indicate a more general problem.
Design-for-Test: Scan and ATPG Training 9-31
December 2003

Troubleshooting DRC and Simulation Mismatch
When, Where, and How Many
Mismatches (Cont.)

Notes:

9-32 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

When, Where, and How Many Mismatches (Cont.)

♦ Checking for mismatches:
● Do both the serial and parallel test bench fail or just one of them?

– Serial failure indicates mismatch is related to scan shifting.
– A shadows problem may cause serial test bench to pass and the

parallel test bench to fail
.

● Does the chain test fail?
– If the serial pattern fails the chain test also fails.

● Do only certain pattern types fail?
– If only ram sequential patterns fail, the problem is related to RAMs.
– If only clock_sequential patterns fail, the problem is related to non-

scan flip-flops and latches.
Design-for-Test: Scan and ATPG Training9-32
December 2003

Troubleshooting DRC and Simulation Mismatch
Clock Skew Problems

Notes:

9-33 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Clock Skew Problems

♦ Clock delays are caused by the following:
● Routing.
● Gates (muxes, buffers) on clock lines.

♦ Do the following to detect this problem:
● Run a time-based simulation.

– ModelSim or HDL simulator.

● Run a critical timing analysis in scan mode.
– SST Velocity or another static timing analyzer
Design-for-Test: Scan and ATPG Training 9-33
December 2003

Troubleshooting DRC and Simulation Mismatch
Timing Violations

Notes:

9-34 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Timing Violations

♦ The following timing issues cause mismatches:
● Setup and hold violations during testbench simulation.
● Timeplate with timing too tight.

– Timing events need more separation.

♦ Do the following to correct this problem:
● Examine the simulation data and compare the values observed with

values expected by FastScan.
● Expand timeplate and/or test procedure files.

– Default timing has 10 ns separation of events.
Design-for-Test: Scan and ATPG Training9-34
December 2003

Troubleshooting DRC and Simulation Mismatch
Library Problems

Notes:

9-35 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Library Problems

♦ Incorrect library model:
– For combinational and sequential elements, this causes mismatches

for all patterns.
– For instances such as RAM, this causes mismatches for a few

patterns (such as RAM sequential).

● Non-equal values on the inputs to non-tristate multi-driven nets

♦ To check for this problem:
● Run simulation on library.

– Has the library been validated (verified) ?
Design-for-Test: Scan and ATPG Training 9-35
December 2003

Troubleshooting DRC and Simulation Mismatch
Automatic Analysis of Simulation
Mismatch

Notes:

9-36 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Automatic Analysis of Simulation Mismatch

♦ Automatic analysis of simulation mismatch:
● Traces the design, automatically
● Locates sources of mismatch between FastScan and ModelSim
● Displays mismatch sources(s) in:

– DFTInsight
– ModelSim
Design-for-Test: Scan and ATPG Training9-36
December 2003

Troubleshooting DRC and Simulation Mismatch
Automatic Analysis of Simulation
Mismatch (Cont.)

Notes:

9-37 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Automatic Analysis of Simulation Mismatch (Cont.)

♦ Automatic analysis of simulation mismatch:
 ATPG> SAVe PAttern <filename.v> -Verilog -Debug

 -Display

● Saves test bench in parallel Verilog format
● Compiles test bench
● Invokes vsim (ModelSim)
● Compares simulation result between vsim and FastScan

– Locates the source(s) of mismatch

● Displays the first mismatch source in DFTInsight and ModelSim
● Reports mismatch sources

Performs automatic troubleshooting
Design-for-Test: Scan and ATPG Training 9-37
December 2003

Troubleshooting DRC and Simulation Mismatch
Debugging Serial Simulation
Mismatches: Chain Test

Notes:

9-38 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Debugging Serial Simulation Mismatches: Chain Test

♦ In most cases where serial simulation mismatches and
parallel simulation passes, the serial chain test will also fail.

♦ Confirm that the chain test fails:
● Save out a pattern with chain test.
 SETUP> SAVe PAtterns <filename> -Serial -CHain_test

● Verify pattern using a time-based simulator.

♦ If the chain test fails, do the following:
● Edit the procedure file so that it contains two independent shifts.
● Use the parallel test bench.
Design-for-Test: Scan and ATPG Training9-38
December 2003

Troubleshooting DRC and Simulation Mismatch
Clock Skew in Chain Test

Notes:

9-39 • Design-for-Test: Scan and ATPG:
Troubleshooting DRC and Simulation Mismatch

Copyright © 2003 Mentor Graphics Corporation

Clock Skew in Chain Test

♦ Clock skew occurs in chain test when the scan cells
 are clocked at slightly different times:

● Scan cells should capture “old” data of D.
– But, Q is updated with a “new” value.

♦ Solution:
● Add buffers.
● Redo clock synthesis.
Design-for-Test: Scan and ATPG Training 9-39
December 2003

Troubleshooting DRC and Simulation Mismatch
Lab: Troubleshooting DRC and
Simulation Mismatch

Objectives

• Use DFTAdvisor to insert scan chains.

• Identify blocks of low coverage.

• Determine the cause of ATPG Untestable (AU) faults.

• Use DFTInsight to debug faults.

• Check for simulation mismatch.

• Correct DRC violations.

List of Exercises

• Exercise 21: Troubleshooting DRC and Simulation Mismatch — Full Tool
Flow

• Exercise 22: Debugging Mismatches with Automated Tools

Getting Started

1. Log in to your workstation if you are not already logged in.

2. Change to the $ATPGNW/lab 9/exercise_21 directory.

shell> cd $ATPGNW/lab9/exercise_21

Note

Remember that for the exercises in this lab you use the libraries
found in the libraries_7_to_9 directory.
Design-for-Test: Scan and ATPG Training9-40
December 2003

Troubleshooting DRC and Simulation Mismatch
Exercise 21: Troubleshooting DRC and Simulation
Mismatch — Full Tool Flow

This exercise takes you through multiple runs of DFTAdvisor, FastScan, and
ModelSim to do the following:

• Insert scan chains and test logic.

• Improve test coverage.

• Check for simulation mismatch.

• Correct DRC violations.

• Generate high quality patterns.

In the following activities, you run the DFT applications from batch mode by
using dofiles to pipe commands into the applications. Recall that a dofile is a text
file that enables you to automatically control the operations of the tool because it
contains application commands. If you have a large number of commands, or a
common set of commands that you use frequently, you can save time by placing
these commands in a dofile.

If you place all commands, including the Exit command, in a dofile, you can
run the entire session as a batch process that is run at invocation.

1. Run the runDFTA invocation script.

shell> runDFTA

a. What does the script instruct DFTAdvisor to do? (Look in the Shell
window.)

Note

You may have to use ./runDFTA depending on how the account
path is defined
Design-for-Test: Scan and ATPG Training 9-41
December 2003

Troubleshooting DRC and Simulation Mismatch
__

__

__

b. What is the name of the .do file that the runDFTA script references?

c. What nets are not driven? ___________________________________

d. What are FN1 violations and how many are there? ________________

e. How many scannability failures are there? _______________________

f. Which scannability rule fails? _________________________________

g. Which clock rule fails? __________How many times? _____________

The runDFTA script runs the following commands from the dfta.do dofile:
add clocks 0 clk
add clocks 0 rst
set drc handling c1 warning
set system mode dft
run
insert test logic -number 2 -clock merge -edge merge
report scan chains
write netlist netlists/gate_scan.v -verilog -replace
write atpg setup atpg -replace
exit
Design-for-Test: Scan and ATPG Training9-42
December 2003

Troubleshooting DRC and Simulation Mismatch
You instructed DFTAdvisor to insert two scan chains and to write
 a netlist — gate_scan.v.

2. Run the runFS invocation script.

shell> runFS
 OR
shell> ./runFS

a. What does this script instruct DFTAdvisor to do? _________________

The runFS script runs the following commands from the fs.do dofile:

dofile atpg.dofile //dofile written by DFTAdvisor
set system mode atpg
add faults -all
run
rep statistics
save pat verilog_ser.pat -verilog -serial -proc -end 1 \
-rep
save pat verilog_par.pat -verilog -parallel -proc -rep
exit

The atpg.dofile dofile runs the following commands:

add scan groups grp1 atpg.testproc
add scan chains chain1 grp1 scan_in1 scan_out1
add scan chains chain2 grp1 scan_in2 scan_out2
add clocks 0 rst
add clocks 0 clk
SET DRc Handling C01 WARNING

b. Fill in the following tables:
Design-for-Test: Scan and ATPG Training 9-43
December 2003

Troubleshooting DRC and Simulation Mismatch
Table 9-1. Report Statistics ATPG

Table 9-3. Report Coverage/Effectiveness ATPG

Note that after the script finishes, you are in FastScan interactive
command mode.

c. Observe the S1 violations from the dfta.log file.

 ATPG> cat results/dfta.log

FastScan generated test patterns, but you have a problem — the test
coverage is too low because of S1 violations and other problems.

In the next activity, you open DFTInsight to view the S1 violations.

Table 9-2.

Fault Class # faults (coll.) # faults (total)

FU (full)

UO (unobserved)

DS (det_sim)

DI (det_imp)

PU (posdet_untestable)

UU (unused)

TI (tied)

BL (blocked)

RE (redundant)

AU (atpg_untestable)

Table 9-4.

sim_pat. #test_pat. test_cov. fault_cov. atpg_effect.
Design-for-Test: Scan and ATPG Training9-44
December 2003

Troubleshooting DRC and Simulation Mismatch
3. Open DFTInsight.

ATPG> open schematic viewer

a. View S1 violations, selecting the Analyze > DRC Violation menu
option.

i. Analyze the D5-1 DRC violation. Click on D5 in the Failed DRCs
Qty area, then double click on D5-1 in the Specific IDs area.

What element is displayed graphically? _______________________

What warning message appears in the Message Area?

ii. Use the E-Z Trace Mode button to trace back one level from pin “R”.

What gate drives “R”? ___________________________________

iii. Trace back one level on “A0”.

What gate drives “A0”? ___________________________________

iv. Trace back one level on “A1”.

What gate drives “A1”? ___________________________________

b. Exit FastScan. This closes DFTInsight as well.

4. It is possible to produce a netlist that corrects the violations. Run the
runDFTA1 invocation script.

shell> runDFTA1
 OR
shell> ./runDFTA1

a. What is the difference between this script and the last one?
Design-for-Test: Scan and ATPG Training 9-45
December 2003

Troubleshooting DRC and Simulation Mismatch

b. What does this achieve? ____________________________________

The runDFTA1script runs the following commands from the dfta1.do
dofile:

add clo 0 clk
add clo 0 rst
set test logic -reset on //to prevent S1 violations
set drc handling c1 warning
set sys mode dft
run
insert test logic -number 2 -clock merge -edge merge
report scan chains
write netlist netlists/gate_scan.v -verilog -replace
write atpg setup atpg -replace
exit

DFTAdvisor inserted test logic on the resets to make them controllable and
inserted scan chains. A new netlist file — gate_scan.v was written, as well
as new ATPG setup files.

c. Run the runFS script to generate test patterns.

shell> runFS

d. Fill in the following tables:
Design-for-Test: Scan and ATPG Training9-46
December 2003

Troubleshooting DRC and Simulation Mismatch
Table 9-5. Report Statistics ATPG

Table 9-7. Report Coverage/Effectiveness ATPG

The test coverage has improved, but it can be improved further.

5. In the next activity, you assess the reasons for low coverage, determine why
faults are classified as untestable, and use DFTInsight to analyze the design.

a. Analyze the AU fault class to find a summary of the reasons for faults
that are allocated to this class.
 ATPG> report testability data -class au

Fill in the following:

Table 9-6.

Fault Class # faults (coll.) # faults (total)

FU (full)

UO (unobserved)

DS (det_sim)

DI (det_imp)

PU (posdet_untestable)

PT (posdet_testable)

UU (unused)

TI (tied)

BL (blocked)

RE (redundant)

AU (atpg_untestable)

Table 9-8.

sim_pat. #test_pat. test_cov. fault_cov. atpg_effect.
Design-for-Test: Scan and ATPG Training 9-47
December 2003

Troubleshooting DRC and Simulation Mismatch
Table 9-9. Report Testability Data Class AU

b. Report and list all AU faults.

What command do you use? _________________________________

c. Analyze the AU fault /U_CTR/U14238/A0 (About 5th up from the
bottom.)

What command do you use? _________________________________

What is causing the problem ? ________________________________

6. Open DFTInsight.

a. What command do you use? _________________________________

b. Select Analyze > Faults to bring up the DFTInsight Faults Analysis
dialogue box.

i. Analyze the same node as above by typing it into the Fault entry
field (in the middle of the dialogue box).

ii. Set the options to Stuck-at-1/Slow-to-Fall (Options... button).

iii. Click on the Analyze button.

iv. You should see the same message as in 5.c above.

Table 9-10.

Total No.
Faults AU
class

No. Faults
tied by
constraints

No. Faults
blocked by
constraints

No. Faults
Connect.
to
clk/set/rese
t

No. Faults
connected
from tiex

No. Faults
unclassifie
d

Design-for-Test: Scan and ATPG Training9-48
December 2003

Troubleshooting DRC and Simulation Mismatch
c. Set up the reporting detail to work with constrained pins and scan cells.

i. Choose Setup > Reporting Detail in the menu item.

ii. Select — Simulated Values Resulting From: Constrained Pins and
Scan Cells. Click OK.

iii. Click on the Analyze (Graphical) button in the DFTInsight Fault
Analysis window. Continue to DFTInsight.

d. Zoom in to find the instance that is a black box. It is located somewhere
to the top and left of the banks of RAMs, ROMs and registers.

i. Click on the Zoom In button multiple times to expand the displayed
view (or use I and O to zoom in and out). Look for a register whose
inputs and most of its outputs are undefined.

What is the instance called? _______________________________

Find

Find button
Design-for-Test: Scan and ATPG Training 9-49
December 2003

Troubleshooting DRC and Simulation Mismatch
ii. You can trace this instance all the way to U_CTR/U14238/A0. Click
on the Zoom In button until instance U_CTR/U14238 (far right nand
gate) is clearly displayed, or click on the Find button and type
U_CTR/U14238 in the Name or Gate ID to be Viewed field.

iii. Select the wire connected to gate A0.

iv. Trace it back to U_CTR/U12976, and continue tracing it back
through and gates, inverters and buffers until instance I8051_ALU is
clearly displayed.

v. Zoom In and Zoom Out as needed for best view.

e. When you have finished, exit from DFTInsight.

7. Instance I8051_ALU is a black box that is causing the loss of controllability
on instance /U_CTR/U14238/A0. However, if we make the outputs of this
module directly controllable from primary input (PI) faults in its logic cone
then it would be controllable. It is possible from within FastScan to
determine how much this would improve test coverage before going back to
DFTAdvisor to make the improvements.

a. Go to system mode setup.

b. Add the extra primary inputs. A dofile, addpi.dof does this for you. Run
this file.

What commands are in the dofile? ____________________________

c. Set system mode to atpg and add all faults.

What two commands do you use?

i. ___
Design-for-Test: Scan and ATPG Training9-50
December 2003

Troubleshooting DRC and Simulation Mismatch
ii. __

d. Run.

e. Report statistics and fill in the following:

Table 9-11. Report Statistics ATPG

Table 9-13. Report Coverage/Effectiveness ATPG

This gives a much more acceptable test coverage.

f. It is possible to report on what happened by using the report gate
command.

Table 9-12.

Fault Class # faults (coll.) # faults (total)

FU (full)

UO (unobserved)

DS (det_sim)

DI (det_imp)

PU (posdet_untestable)

UU (unused)

TI (tied)

BL (blocked)

RE (redundant)

AU (atpg_untestable)

Table 9-14.

sim_pat. #test_pat. test_cov. fault_cov. atpg_effect.
Design-for-Test: Scan and ATPG Training 9-51
December 2003

Troubleshooting DRC and Simulation Mismatch
Run the dofile reppi.dof to view the status of the inputs.

The reppi.dof dofile runs the following commands:

rep gate U_ALU/des_1[0]
rep gate U_ALU/des_1[1]
rep gate U_ALU/des_1[2]
rep gate U_ALU/des_1[3]
rep gate U_ALU/des_1[4]
rep gate U_ALU/des_1[5]
rep gate U_ALU/des_1[6]
rep gate U_ALU/des_1[7]
rep gate U_ALU/des_2[0]
rep gate U_ALU/des_2[1]
rep gate U_ALU/des_2[2]
rep gate U_ALU/des_2[3]
rep gate U_ALU/des_2[4]
rep gate U_ALU/des_2[5]
rep gate U_ALU/des_2[6]
rep gate U_ALU/des_2[7]

g. Exit FastScan without saving patterns.

Why not save any patterns? __________________________________

Next, DFTAdvisor inserts test logic to improve controllability of the logic
in the output cone of I8051_ALU.

DFTAdvisor inserts control logic driven from the newly added scan cells.

8. The modifications necessary for DFTInsight to correct the problem are in
the runDFTA2 invocation script.

Run the script runDFTA2.

a. What is the difference between this script and the last one?

Design-for-Test: Scan and ATPG Training9-52
December 2003

Troubleshooting DRC and Simulation Mismatch

b. What does this achieve? ____________________________________

The runDFTA2 script runs the following commands from the dfta2.do
dofile:

add clo 0 clk rst
set test logic -reset on
set drc handling c1 warning
dofile control.dof
set system mode dft
run
insert test logic -number 2 -clock merge -edge merge
report scan chains
write netlist /netlists/gate_scan.v -verilog -replace
write atpg setup atpg -replace

The control.dof dofile runs the following commands:

add cell model sff -type scan CLK D
add test point /U15/A control mux21_macro test_en -new \
sff
add test point /U30/A control mux21_macro test_en -new \
sff
add test point /U37/A control mux21_macro test_en -new \
sff
add test point /U35/A control mux21_macro test_en -new \
sff
add test point /U29/A control mux21_macro test_en -new \
sff
add test point /U34/A control mux21_macro test_en -new \
sff
add test point /U28/A control mux21_macro test_en -new \
sff
add test point /U23/A control mux21_macro test_en -new \
sff
Design-for-Test: Scan and ATPG Training 9-53
December 2003

Troubleshooting DRC and Simulation Mismatch
add test point /U17/A control mux21_macro test_en -new
sff
add test point /U24/A control mux21_macro test_en -new
sff
add test point /U44/A control mux21_macro test_en -new
sff
add test point /U11/A control mux21_macro test_en -new
sff
add test point /U13/A control mux21_macro test_en -new
sff
add test point /U12/A control mux21_macro test_en -new
sff
add test point /U10/A control mux21_macro test_en -new
sff
add test point /U9/A control mux21_macro test_en -new sff

c. Exit DFTAdvisor.

d. Run the runFS script to generate patterns.

Fill in the following:

Table 9-15. Report Statistics ATPG

Table 9-16.

Fault Class # faults (coll.) # faults (total)

FU (full)

UO (unobserved)

DS (det_sim)

DI (det_imp)

PU (posdet_untestable)

UU (unused)

TI (tied)

BL (blocked)

RE (redundant)
Design-for-Test: Scan and ATPG Training9-54
December 2003

Troubleshooting DRC and Simulation Mismatch
Table 9-17. Report Coverage/Effectiveness ATPG

e. Exit FastScan.

Next you compile and simulate the test patterns using ModelSim to check
for simulation mismatch.

9. Run ModelSim.

shell> run_sim
 OR
shell> ./run_sim

What does this script do? _______________________________________

This is the run_sim invocation script:
rm -r work
vlib work
vlog netlists/gate_scan.v
vlog lib/adk.v
vlog verilog_par.pat
vsim I8051_ALL_verilog_par_pat_ctl

a. Run the simulation. Choose the Simulate > Run > Run -All menu
item.

i. Select ‘No’ in the Finish Vsim dialogue box after simulation
finishes.

AU (atpg_untestable)

Table 9-18.

sim_pat. #test_pat. test_cov. fault_cov. atpg_effect.

Table 9-16.

Fault Class # faults (coll.) # faults (total)
Design-for-Test: Scan and ATPG Training 9-55
December 2003

Troubleshooting DRC and Simulation Mismatch
ii. Expand the ModelSim Main window to see all the messages.

iii. Observe the mismatch messages in the ModelSim Transcript
window.

b. Exit ModelSim.

10. It is recommended that you start troubleshooting mismatches by first
checking to see if any of the failing pattern cells correlate to DRC errors. In
this case the place to start is in the log file for the last run in DFTAdvisor.
Open /results/dfta2.log and study the DRC violations in this file.

shell> cat results/dfta2.log

What type of DRC violations are causing the problems?

__

11. There is an easy way of ‘fixing’ patterns to cope with these errors within
FastScan. The correction has been made in the script runFS1.

a. Study the script and identify the change(s) made __________________

 __

b. Run the runFS1 script.

The runFS1script runs the following commands from the fs1.do dofile:

dofile atpg.dofile
set system mode atpg
add fault -all
set clock_off simulation on
set atpg compression on
run
rep stat
sav pat verilog_ser.pat -verilog -serial -proc -end 1
-rep
sav pat verilog_par.pat -verilog -parallel -proc -rep
exit
Design-for-Test: Scan and ATPG Training9-56
December 2003

Troubleshooting DRC and Simulation Mismatch
c. Fill in the following:

Table 9-19. Report Statistics ATPG

Table 9-21. Report Coverage/Effectiveness ATPG

You generated patterns with clock_off simulation on. Ideally, you would
find that the failing cells in the simulation correspond to the C6 warnings.
The clock_off simulation will change the ATPG behavior for these cells.

d. Re-run the simulation to verify that there are no simulation mismatches.

e. Exit ModelSim.

Table 9-20.

Fault Class # faults (coll.) # faults (total)

FU (full)

UO (unobserved)

DS (det_sim)

DI (det_imp)

PU (posdet_untestable)

UU (unused)

TI (tied)

BL (blocked)

RE (redundant)

AU (atpg_untestable)

Table 9-22.

sim_pat. #test_pat. test_cov. fault_cov. atpg_effect.
Design-for-Test: Scan and ATPG Training 9-57
December 2003

Troubleshooting DRC and Simulation Mismatch
Exercise 22: Debugging Mismatches with Automated
Tools

In this exercise, you enable FastScan to perform automatic analysis of simulation
mismatches when saving patterns using the -debug switch.

Automatic analysis of simulation mismatch traces back through the design,
locates mismatches between FastScan and ModelSim, and displays mismatch
sources in DFTInsight and FastScan.

Automatic analysis does the following:

• Compiles the testbench

• Invokes vsim (ModelSim)

• Compares simulation result between vsim and FastScan

o Locates the source(s) of mismatch

• Displays the mismatch source in DFTInsight and ModelSim

 Getting Started

1. Log in to your workstation if you are not already logged in.

2. Change to the $ATPGNW/lab 9/exercise_22 directory.

shell> cd $ATPGNW/lab9/exercise_22

In the first activity, you create test patterns using FastScan. Next, you
prepare a simulation library area and compile the design. Then you save
patterns and automatically simulate them to check for mismatch.

3. Invoke the design in FastScan from the shell prompt.

shell> fastscan gate_scan_8.v -verilog -lib \
../../libraries_7_to_9/atpglib -sensitive -nogui -log \
good_run.log -replace
Design-for-Test: Scan and ATPG Training9-58
December 2003

Troubleshooting DRC and Simulation Mismatch
a. Run the dofile atpg_8.dofile.

What commands does the dofile execute? _______________________

By default, FastScan simulates a single event per test cycle. Default
simulation is not appropriate if FastScan is reporting C3/C4/C6 DRC
violations when you exit setup mode. This design does have circuitry
issues that cause C6 DRC violations. A C6 DRC violation occurs when
a clock input of a scannable element and its data line are in the same
cone. FastScan assumes that the clock “ON” (active) value is captured
into these cells. The exact behavior cannot be predicted without timing
information. If this is not correct, you can change the C6 handling by
using the set clock_off simulation on command.

b. What does the set clock_off simulation on command do?

i. __

ii. __

iii. __

c. Set Clock_off Simulation ON.

What command do you use? __________________________________

4. Go to ATPG system mode, load faults and generate patterns.

a. Set system mode ATPG.

b. Load external faults.

 ATPG> load faults fs_sample_faults.flt -restore

What does the -restore switch do? ____________________________

 __
Design-for-Test: Scan and ATPG Training 9-59
December 2003

Troubleshooting DRC and Simulation Mismatch
c. Generate patterns using the run command.

d. You need to prepare a work library and compile the design.

 ATPG> system rm -r work
 ATPG> system vlib work
 ATPG> system vlog gate_scan_8.v -v adk.v -v ram.v \
 -work work

e. Save patterns and automatically simulate them.

 ATPG> save patterns testpat_p.v -verilog -replace \
 -debug -display -begin 0 -end 20

f. What does the message say in the shell window? __________________

Any mismatches? ___________

g. Exit FastScan.

5. In this activity, you again save patterns and perform automatic analysis of
simulation mismatch. But, this time the aoi22 library cell has had its
internal connections changed to produce simulation mismatch.

Invoke FastScan at the shell prompt:

shell> fastscan gate_scan_8.v -verilog \
../../libraries_7_to_9/atpglib_e -sensitive -nogui \
-log bad_run.log -replace

a. Run the dofile atpg_8.dofile.

b. Set Clock_off Simulation ON.

c. Go to ATPG mode.

d. Load external faults.

e. Generate patterns.
Design-for-Test: Scan and ATPG Training9-60
December 2003

Troubleshooting DRC and Simulation Mismatch
f. Prepare a simulation library area (work) and compile the design as you
did in step 4.d.

g. Save patterns and automatically simulate them.

h. What does the message say in the shell window? __________________

Any mismatches? ___________

FastScan automatically displays the simulation mismatch. The error is in
the aoi22 library cell.

Compare the two DFT library models.

atpglib DFT library file:

 model aoi22(A0, A1, B0, B1, Y) (
 input(A0, A1, B0, B1) ()
 intern(INT_RES_0) (primitive = _and(A0, A1, INT_RES_0);)
 intern(INT_RES_1) (primitive = _and(B0, B1, INT_RES_1);)
 output(Y) (primitive = _nor(INT_RES_0, INT_RES_1, Y);)
)

atpglib_e DFT library file:

 model aoi22(A0, A1, B0, B1, Y) (
 input(A0, A1, B0, B1) ()
 intern(INT_RES_0) (primitive = _and(A0, A1, INT_RES_0);)
 //intern(INT_RES_1) (primitive = _and(B0, B1, INT_RES_1);)
 intern(INT_RES_1) (primitive = _and(B0, A1, INT_RES_1);)
 output(Y) (primitive = _nor(INT_RES_0, INT_RES_1, Y);)
)

What is the difference between the two DFT library models?

Note

This takes some time before you observe results.
Design-for-Test: Scan and ATPG Training 9-61
December 2003

Troubleshooting DRC and Simulation Mismatch

You can view the mismatched waveforms from this simulation in the
Wave window in ModelSim.

i. Select ‘No’ in the Finish Vsim dialogue box after simulation
finishes.

ii. Expand the ModelSim Main window to see all the messages.

iii. Observe the mismatch messages in the Transcript window.

iv. Experiment with the Wave window to view the waveforms of the
mismatched simulation.

i. When you have finished, exit ModelSim.

j. Exit FastScan and exit the lab.
Design-for-Test: Scan and ATPG Training9-62
December 2003

Troubleshooting DRC and Simulation Mismatch
Test Your Knowledge

1. List the steps you would take to troubleshoot areas of low coverage.

__

2. What command is used to analyze collapsed faults for the AU fault class?

__

3. Why are dofiles useful?

__

4. What command is used when FastScan reports C6 violations?

__

5. What command is used when FastScan is reporting C3 violations?

__

6. When saving patterns, what switch option enables automatic analysis of
simulation mismatch?

__
Design-for-Test: Scan and ATPG Training 9-63
December 2003

Troubleshooting DRC and Simulation Mismatch
Lab Summary

Now that you have completed the Troubleshooting DRC and Simulation
Mismatch lab, you should know how to do the following:

• Use DFTInsight to debug S1 violations.

• Identify blocks of low coverage.

• Determine the cause of ATPG Untestable (AU) faults.

• Check for simulation mismatch.

• Correct DRC violations.

• Enable FastScan to perform automatic analysis of simulation mismatch
when saving patterns.

Design-for-Test: Scan and ATPG Training9-64
December 2003

Design
Decem

NOTES:
-for-Test: Scan and ATPG Training
ber 2003

Part Nu
mber: 069871

	About This Training Workbook xix
	Introduction i-xix
	Training Modules i-xx
	Audience i-xxi
	Prerequisite Knowledge i-xxii
	Acronyms Used in This Workbook i-xxii
	Customer Support Information i-xxiii

	Module 1 Basic Concepts 1-1
	Module Topics 1-2
	Why ManufacturingTest? 1-3
	What is Design-for-Test? 1-5
	Why Design-for-Test? 1-6
	Yield and Defect Levels 1-7
	Testing and Cost 1-8
	What is Testability? 1-9
	Types of Test 1-12
	Manufacturing Defects 1-13
	Fault Models 1-14
	Stuck-at Fault Model 1-15
	Transition Fault Model 1-16
	Path Delay Fault Model 1-19
	IDDQ Fault Model 1-21
	Scan Design 1-22
	Scan Cell Types 1-23
	Mux DFF Scan Cell 1-24
	LSSD Scan Cell 1-25
	Clocked Scan Cell 1-26
	Scan Chains 1-27
	Scan Based Designs 1-28
	Design Flow 1-30
	Test Flow 1-31
	Tool Flow 1-32
	DFTAdvisor Overview 1-33
	FastScan Overview 1-34
	Graphical User Interface 1-35
	Getting Help 1-37
	Unix and Kshell within the GUI 1-38
	Accessing SupportNet Material 1-39
	Customer Support 1-40
	Lab: Basic Concepts and DFT Flow 1-41

	Module 2 Full Scan DFT Flow 2-1
	Module Topics 2-2
	Scan and ATPG Flow 2-3
	Circuit Setup 2-4
	Gate-Level Netlist 2-5
	Auto Black Boxing for Incomplete Netlists 2-6
	Black Boxes 2-7
	DFT Library 2-8
	Creating a DFT Library 2-9
	Automatic Generation of DFT Libraries 2-10
	Include File Handling 2-11
	Invoking DFTAdvisor 2-12
	DFTAdvisor Tool Flow: An Overview 2-13
	Command Structure 2-14
	DFTAdvisor Tool Flow 2-15
	SETUP 2-16
	Scan/Test Logic Configuration 2-19
	Set Test Logic Configuration 2-20
	Adding Test Logic 2-21
	Set Test Logic Configuration (Defining Non-scan Areas) 2-23
	Design Rule Checking (DRC) 2-24
	DRC 2-25
	DRC Basics 2-26
	Types of DRCs 2-28
	Scan Specific DRCs 2-29
	DFTInsight 2-30
	Troubleshooting DRC Violations: Reporting S1 Fails 2-31
	Viewing the Problem: Analyzing S1 Violations 2-32
	Troubleshooting DRC Violations: Adding Clocks 2-33
	Troubleshooting DRC Violations: Reporting S2 Fails 2-34
	Viewing the Problem: Analyzing S2 Violations 2-35
	Troubleshooting DRC S2 Violation 2-36
	Viewing the Added TestClock Logic 2-37
	Scan Identification 2-38
	Scan/Test Logic Insertion 2-39
	Write Results 2-41
	FastScan Dofile 2-42
	Enhanced Procedure File 2-43
	Invoking FastScan 2-45
	FastScan Tool Flow an Overview 2-46
	FastScan Tool Flow 2-47
	SETUP 2-48
	FastScan ATPG in a DC Scan Insertion Flow 2-50
	ATPG Setup Files 2-51
	DRC (FastScan) 2-52
	Configuration 2-53
	Generate Patterns 2-54
	Create Patterns 2-55
	Save Results 2-56
	Saving Test Patterns 2-57
	Scan and ATPG Tool Flow 2-58
	Lab: Full Scan DFT Flow 2-59

	Module 3 Configuring Scan Chains/Test Logic and Full Scan Flow 3-1
	Module Topics 3-2
	Scan Methodology: Scan Cells 3-3
	Scan Methodology: Full Scan 3-4
	Scan Methodology: Full Scan Versus Partial Scan 3-5
	Scan Methodology: DFT library and Scan Identification 3-6
	Test Logic 3-8
	Test Logic: Defining Library Models 3-11
	Pins 3-12
	Defining Pins 3-13
	Clocks 3-16
	Multiple Clock Issues 3-17
	Multiple Clocks: Minimizing Clock Skew 3-19
	Multiple Clocks 3-22
	Multiple Clocks: Merging Clock Edges 3-23
	Multiple Clocks: Merging Different Clocks 3-24
	Multiple Clocks: Using Lockup Latches 3-25
	Balancing Scan Chains 3-26
	Scan Chain Ordering and Stitching 3-28
	Scan Chain Ordering and Stitching Flow 3-29
	Scan Chain Stitching: Unstitched Scan Cells 3-30
	Scan Chain Stitching: Stitching Existing Scan Cells 3-31
	Lab: Configuring Scan Chains/Test Logic and Full Scan Flow 3-32

	Module 4 Understanding ATPGMessaging 4-1
	Module Topics 4-2
	Messages at Invocation 4-3
	Messages at Invocation: Warnings 4-4
	Messages When Exiting Setup 4-5
	ATPG Reporting 4-6
	Special Messages in ATPG Reporting 4-8
	Test Coverage Reporting 4-9
	Test Coverage Reporting Fault Collapsing 4-12
	Determining the Cause of Undetected Faults 4-13
	Lab: Understanding ATPG Messaging 4-16

	Module 5 Achieving High Test Coverage 5-1
	Module Topics 5-2
	Methodologies: Initial Run (Fault Sampling) 5-3
	Methodologies: External Fault List 5-4
	Adding NOfaults 5-5
	FastScan’s Test Pattern Types 5-6
	Basic Scan Patterns 5-7
	Basic Scan Pattern Operation 5-9
	Clock Primary Output Patterns 5-16
	Clock Sequential Patterns 5-18
	Clock Sequential Pattern Operation 5-21
	RAM Sequential Patterns 5-28
	RAM Sequential Patterns Example: To Test For Stuck-At-0 at the Output of U1 5-32
	RAM Sequential Pattern Operation 5-33
	Multi Load Patterns 5-37
	Multi Load Patterns Example 5-39
	MacroTest Patterns 5-41
	MacroTest 5-42
	Memory BIST 5-43
	Test Pattern Type Summary 5-44
	Saving Patterns 5-45
	Reuse, Debugging, and Diagnostics 5-46
	Reuse, Debugging, and Diagnostics: ASCII and Binary Formats 5-47
	Reuse, Debugging, and Diagnostics: Reading ASCII Files Back into FastScan.5-48
	Time-Based Verification 5-49
	Verification of Pattern Formats 5-51
	Manufacturing Test 5-52
	Lab: Achieving High Test Coverage 5-53

	Module 6 Creating High Quality Patterns at Low Cost 6-1
	Module Topics 6-2
	Quality and Cost 6-3
	Quality 6-4
	Cost 6-5
	At-Speed ATPG 6-6
	At-Speed ATPG and the Transition Fault Model 6-8
	At-Speed ATPG and the Path Delay Fault Model 6-9
	The Path Delay Model 6-10
	Transition Fault Patterns 6-16
	Creating Transition Fault Patterns: Launch-Off Shift 6-17
	Creating Transition Fault Patterns: Broadside 6-18
	Timing for At-Speed Test 6-19
	Path Delay Pattern Flow 6-21
	Path Definition Files 6-23
	Creating Path Delay Patterns 6-24
	IDDQ Patterns 6-25
	Creating IDDQ Patterns 6-26
	Optimizing Quality and Cost 6-28
	ATE Characteristics 6-30
	Lab: Creating High Quality Patterns at Low Cost 6-31

	Module 7 Advanced ATPG 7-1
	Module Topics 7-2
	Black Boxes 7-3
	Black Box Examples 7-4
	Testing Embedded Blocks 7-5
	Testing Embedded Memories: MacroTest 7-7
	At-Speed MacroTest 7-9
	Testing Embedded Memories: Synchronous MacroTest 7-10
	Built-In Self-Test Basics 7-12
	Testing Embedded Memories: Memory BIST 7-13
	Testing Embedded Memories: Memory BIST Bypass 7-14
	Initialization Issues 7-15
	Initialization Example 7-17
	Auto Generate Test_Setup 7-18
	Boundary Scan Basics 7-19
	Boundary Scan Architecture 7-20
	Connecting Boundary Scan with Internal Scan 7-21
	Accessing Internal Scan Instructions 7-23
	Connecting Internal Scan to Boundary Scan Using BSDArchitect 7-24
	Top Up ATPG 7-25
	Top Up Patterns From BIST 7-26
	Diagnostics 7-27
	Diagnostics: FastScan 7-28
	Performing a Diagnosis 7-29
	Diagnostic Commands 7-30
	Diagnostics: Failure File 7-31
	Diagnostics Report 7-32
	Diagnostics Issues 7-34
	Lab: Advanced ATPG 7-35

	Module 8 Troubleshooting DRC and Simulation Mismatch 8-1
	Module Topics 8-2
	Troubleshooting Areas of Low Coverage 8-3
	Hierarchy Browser 8-4
	Assessing the Problem 8-5
	Faults Classified as ATPG Untestable 8-9
	Faults Classified as Undetectable 8-10
	Addressing Aborted Faults 8-11
	Bus Contention 8-13
	Addressing Bus Contention 8-14
	Addressing Bus Contention: Types of Contention 8-15
	Debugging Bus Contention 8-16
	Fault-by-Fault AU Debugging: Report Testability Data Command 8-17
	Report Testability Data Command 8-18
	TieX (D5) 8-19
	Fault-by-Fault AU Debugging: Set Gate Report Command 8-20
	Set Gate Report Command -Constrain_Value 8-21
	Fault-by-Fault AU Debugging: Analyze Fault Command 8-22
	Fault-by-Fault AU Debugging: Report Test Stimulus Command 8-23
	Lab: Troubleshooting Areas of Low Test Coverage 8-24

	Module 9 Troubleshooting DRC and Simulation Mismatch 9-1
	Module Topics 9-2
	Analyzing DRC Violations: Commands 9-3
	Analyzing DRC Violations: Report Gates Command 9-4
	DRC Violations: E4 - Procedure (Bus Contention) 9-5
	Debugging E4 Violations 9-6
	E4 Contention on Bidirectionals 9-7
	Clocks 9-8
	Clock Cones 9-9
	Effect Cones 9-10
	Both Cones 9-11
	Clock Rules: C3 9-12
	DRC Violations: C3 9-13
	FastScan Event Simulation 9-14
	Setting Event Simulation 9-15
	Handling C3 Violations 9-16
	Clock Rules: C6 9-17
	Handling C6 Violations 9-18
	Data Rules: D5 9-19
	Data Rules: D6 9-20
	Handling D5 and D6 Violations 9-21
	Scan Chain Trace Rules: T3 9-22
	Common Causes of T3 Errors 9-23
	Scan Chain Trace Rules: T5 9-24
	Debugging T3 and T5 Violations 9-25
	Testbenches 9-26
	Serial Testbench 9-27
	Parallel Testbench 9-28
	Debugging Simulation Mismatches in FastScan 9-29
	DRC Violations: Simulation Mismatches 9-30
	When, Where, and How Many Mismatches 9-31
	Clock Skew Problems 9-33
	Timing Violations 9-34
	Library Problems 9-35
	Automatic Analysis of Simulation Mismatch 9-36
	Debugging Serial Simulation Mismatches: Chain Test 9-38
	Clock Skew in Chain Test 9-39
	Lab: Troubleshooting DRC and Simulation Mismatch 9-40

