
1

BFM-Based Verification Methods

Ando Ki, Ph.D.

(adki@future-ds.com)

2013 – 2017

Copyright © 2013-2017 by Ando Ki Introduction to BFM (2)

Agenda

What is BFM

Usage of BFM

Task-based BFM

File-driven BFM

Native code-driven BFM

2

Copyright © 2013-2017 by Ando Ki Introduction to BFM (3)

Test-bench

Generating
input stimui

DUV Comparing
output and
expected

output

Test-bench

expected output

test vector

Generating
input stimui

DUV
Comparing
output and
expected

output

Test-bench

test vector

Coverage

expected output

Test-bench is an environment that
verifies the functional and timing
correctness of the design under
verification (DUV) according to functional
and timing specifications.

Test-bench should apply test cases, i.e.,
test vectors as many as possible in order
to cover everything that could happen to
that design.

Coverage assessment is required to
measure how much has been verified.

code coverage

measures which part of implemented
design has been exercised by the test
vectors

functional coverage

measure how much functionality of the
design has been exercised by the
verification environment

Copyright © 2013-2017 by Ando Ki Introduction to BFM (4)

Self-checking test-bench

Stimulus
generator

Golden model

DUV

Test-bench

real output

expected output
Post-

processor

Stimulus
generator

Reference
model

Golden model

DUV

Test-bench

reference output

real output

expected output

Check
correctness in
terms of value
and timing

Check quality
of output

3

Copyright © 2013-2017 by Ando Ki Introduction to BFM (5)

Complex function design

C language

HDL

C language

T
e
s
t
p
a
tt
e
rn

g
e
n
e
ra

to
r Algorithmic

model using
floating-

point
(reference

model) C
o
rr
e
c
tn

e
s
s

c
h
e
c
k

a) algorithmic validation

C language

T
e
s
t
p
a
tt
e
rn

g
e
n
e
ra

to
r Reference

model

C
o
m

p
a
re

Fixed-point
model

b) golden model using fixed-point

T
e
s
t
p
a
tt
e
rn

 g
e
n
e
ra

to
r Reference

model

C
o
m

p
a
re

Golden
model

c) overall environment

RTL model

HDL
C language

HDL

C

T
e
s
t
p
a
tt
e
rn

g
e
n
e
ra

to
r

Reference
model

C
o
m

p
a
re

Fixed-point
model

d) Timing accurate fixed-point

T
e
s
t
p
a
tt
e
rn

 g
e
n
e
ra

to
r Reference

model

C
o
m

p
a
re

Fixed-point
model

e) overall environment

RTL model

Copyright © 2013-2017 by Ando Ki Introduction to BFM (6)

How about bus-based system

BFM

your block

Processor

model

Bus model

Memory

model

your block

Stimulus

generator

your block Serial

model

(a) Pattern driven simulation (b) Desirable environment (c) BFM-based verification

Result

comparator

What does testing scenario mean for

bus-based system?

A combination of reads and writes

What does expected result mean for bus-

based system?

4

Copyright © 2013-2017 by Ando Ki Introduction to BFM (7)

What is BFM?

BFM: Bus Functional Model, Bus

Functional Module

BIM: Bus Interface Module

BFM is a functional model generates bus

transaction.

SSRM I/F

SSRAM

F
la

s
h

S
S

R
A

M

Memory

controller

Ethernet

controller

Ethernet

PHY

LCD

controller

LCD

AHB

AHB2APB DMA PIC Timer Your block

APB

Processor SSRM I/F

SSRAM

F
la

s
h

S
S

R
A

M

Memory

controller

Ethernet

controller

Ethernet

PHY

LCD

controller

LCD

AHB

AHB2APB DMA PIC Timer Your block

APB

BFM

ISS

Testing

program

Testing

program

BFM describes the behavior of the part

(e.g. CPU) at the interface-level (bus

transaction level) without modeling the

internal operation of the part.

A sort of transactor

Copyright © 2013-2017 by Ando Ki Introduction to BFM (8)

Usages of BFM

Task-based BFM

File-driven BFM

Native-code driven BFM

Embedded ISS-driven BFM

Remote ISS-driven BFM

B
u

s
 s

ig
n

a
lsRead

task

Write
task

Testing
scenario

using
read/write

tasks

B
u

s
 s

ig
n

a
lsRead

task

Write
task

PLI/VPI/DPI
interface

(a) Task-based BFM

(c) Native-code driven BFM

B
u

s
 s

ig
n

a
lsRead

task

Write
task

File
handling

(b) File-driven BFM

Bus

commands

file

B
u

s
 s

ig
n

a
lsRead

task

Write
task

PLI/VPI/DPI
interface

(d) Embedded ISS-driven BFM

C program

written in C

C program

written in C

HDL

HDL

HDL

HDL

B
u

s
 s

ig
n

a
lsRead

task

Write
task

PLI/VPI/DPI
interface

ISS

(e) Remote ISS-driven BFM

C program

written in C

HDL

ISS

5

Copyright © 2013-2017 by Ando Ki Introduction to BFM (9)

Task-based BFM example

SSRAM

testing

scenario

using

read/writ

e tasks

Read

task

Write

task

SSRAM

controller

(DUV)

SSRAM

AMBA

AHB

SSRAM

specifc

protocol

ahb_bfm

ahb_tasks

ahb_ssram_if k7a163600a_R05

top

'task' is a language construct of Verilog,

which is a kind of sub-routine can contain

time-controlling statements.

Note that 'function' is a similar with 'task',

but it should execute in zeri simulation

time.

A relatively complex testing scenario can

be build by combining tasks.

BFM code should be re-written when

testing scenario changes.

DUV: Design Under Verification

SSRAM: Synchronous Static Random Access Memory

Copyright © 2013-2017 by Ando Ki Introduction to BFM (10)

AMBA AHB and SSRAM Timing Diagram

HCLK

HADDR

HWRITE

HWDATA

HRDATA

HREADY

HRESP

ADSCb

A

WRb

CSb

OEb

AHB

controls

DQ

HSEL

A1 A2

A1 A2

D2

D2

C1 C2

D1

D1

OK1 OK2

A
M

B
A

A
H

B
 b

u
s

s
ig

n
a

ls

S
S

R
A

M

s
in

g
a

ls

Write Read

CLK

6

Copyright © 2013-2017 by Ando Ki Introduction to BFM (11)

top.v

module top ;

reg HRESETn;

reg HCLK;

... ...

wire SRAM_CLK;

... ...

wire [31:0] SRAM_D;

wire [31:0] SRAM_D_O;

wire [31:0] SRAM_D_I;

wire SRAM_D_T;

//--

// _T controls tri-state buffer; drive when low and

// tristate when high

assign SRAM_D = SRAM_D_T ? 32'bz : SRAM_D_O;

assign SRAM_D_I = SRAM_D_T ? SRAM_D : 32'bz;

assign SRAM_DP = SRAM_DP_T ? 32'bz : SRAM_DP_O;

assign SRAM_DP_I = SRAM_DP_T ? SRAM_DP : 32'bz;

/***/

ahb_bfm #(0, 32'hFFF) Uahb_bfm (

.HRESETn(HRESETn),

.HCLK (HCLK),

... ...

);

... ...

... ...

ahb_ssram_if Uahb_ssram_if (

.HRESETn (HRESETn),

.HCLK (HCLK),

... ...

);

k7a163600a Usram (

.CLK (SRAM_CLK),

.A (SRAM_A[18:0]),

... ...

.DQ (SRAM_D),

.DQP (SRAM_DP)

);

/***/

always #5 HCLK <= ~HCLK;

initial begin

HCLK = 0;

HRESETn = 0;

repeat (5) @ (posedge HCLK);

HRESETn = 1;

end

endmodule

Copyright © 2013-2017 by Ando Ki Introduction to BFM (12)

bfm.v (1/2)

module ahb_bfm (... ...);

parameter START_ADDR=0;

parameter DEPTH_ADDR=32'h100;

parameter END_ADDR=START_ADDR+DEPTH_ADDR-1;

input HRESETn; wire HRESETn;

input HCLK; wire HCLK;

output HBUSREQ; reg HBUSREQ;

input HGRANT; wire HGRANT;

output [31:0] HADDR; reg [31:0] HADDR;

output [3:0] HPROT; reg [3:0] HPROT;

output HLOCK; reg HLOCK;

output [1:0] HTRANS; reg [1:0] HTRANS;

output HWRITE; reg HWRITE;

output [2:0] HSIZE; reg [2:0] HSIZE;

output [2:0] HBURST; reg [2:0] HBURST;

output [31:0] HWDATA; reg [31:0] HWDATA;

input [31:0] HRDATA; wire [31:0] HRDATA;

input [1:0] HRESP; wire [1:0] HRESP;

input HREADY; wire HREADY;

input IRQn; wire IRQn;

input FIQn; wire FIQn;

initial begin

HBUSREQ = 0;

HADDR = 0;

HPROT = 0;

HLOCK = 0;

HTRANS = 0;

HWRITE = 0;

HSIZE = 0;

HBURST = 0;

HWDATA = 0;

while (HRESETn===1'bx) @ (posedge HCLK);

while (HRESETn===1'b1) @ (posedge HCLK);

while (HRESETn===1'b0) @ (posedge HCLK);

repeat (3) @ (posedge HCLK);

memory_test(START_ADDR, END_ADDR, 1);

memory_test(START_ADDR, END_ADDR, 2);

memory_test(START_ADDR, END_ADDR, 4);

repeat (5) @ (posedge HCLK);

$finish(2);

end

Testing

scenario

7

Copyright © 2013-2017 by Ando Ki Introduction to BFM (13)

bfm.v (2/2)

/***/

// Test scenario comes here.

task memory_test;

input [31:0] start; // start address

input [31:0] finish; // end address

input [2:0] size; // data size: 1, 2, 4

integer i, error;

reg [31:0] data, gen, got;

reg [31:0] reposit[START_ADDR:END_ADDR];

begin

error = 0;

gen = $random(7);

for (i=start; i<(finish-size+1); i=i+size) begin

gen = $random&~32'b0;

data = align(i, gen, size);

ahb_write(i, size, data);

ahb_read(i, size, got);

got = align(i, got, size);

...

...

`include "ahb_tasks.v"

endmodule

Testing scenario

in details

Copyright © 2013-2017 by Ando Ki Introduction to BFM (14)

ahb_tasks.v: AHB read tasks

task ahb_read;

input [31:0] address;

input [2:0] size;

output [31:0] data;

begin

@ (posedge HCLK);

HBUSREQ <= #1 1'b1;

@ (posedge HCLK);

while ((HGRANT!==1'b1)||(HREADY!==1'b1)) @ (posedge
HCLK);

HBUSREQ <= #1 1'b0;

HADDR <= #1 address;

HPROT <= #1 4'b0001; //`HPROT_DATA

HTRANS <= #1 2'b10; //`HTRANS_NONSEQ;

HBURST <= #1 3'b000; //`HBURST_SINGLE;

HWRITE <= #1 1'b0; //`HWRITE_READ;

case (size)

1: HSIZE <= #1 3'b000; //`HSIZE_BYTE;

2: HSIZE <= #1 3'b001; //`HSIZE_HWORD;

4: HSIZE <= #1 3'b010; //`HSIZE_WORD;

default: $display($time,, "ERROR: unsupported transfer
size: %d-byte", size);

endcase

@ (posedge HCLK);

while (HREADY!==1'b1) @ (posedge HCLK);

HADDR <= #1 32'b0;

HPROT <= #1 4'b0000; //`HPROT_OPCODE

HTRANS <= #1 2'b0;

HBURST <= #1 3'b0;

HWRITE <= #1 1'b0;

HSIZE <= #1 3'b0;

@ (posedge HCLK);

while (HREADY===0) @ (posedge HCLK);

data = HRDATA; // must be blocking

if (HRESP!=2'b00) //if (HRESP!=`HRESP_OKAY)

$display($time,, "ERROR: non OK response for read");

@ (posedge HCLK);

end

endtask

8

Copyright © 2013-2017 by Ando Ki Introduction to BFM (15)

ahb_tasks.v: AHB write tasks

task ahb_write;

input [31:0] address;

input [2:0] size;

input [31:0] data;

begin

@ (posedge HCLK);

HBUSREQ <= #1 1;

@ (posedge HCLK);

while ((HGRANT!==1'b1)||(HREADY!==1'b1)) @ (posedge
HCLK);

HBUSREQ <= #1 1'b0;

HADDR <= #1 address;

HPROT <= #1 4'b0001; //`HPROT_DATA

HTRANS <= #1 2'b10; //`HTRANS_NONSEQ;

HBURST <= #1 3'b000; //`HBURST_SINGLE;

HWRITE <= #1 1'b1; //`HWRITE_WRITE;

case (size)

1: HSIZE <= #1 3'b000; //`HSIZE_BYTE;

2: HSIZE <= #1 3'b001; //`HSIZE_HWORD;

4: HSIZE <= #1 3'b010; //`HSIZE_WORD;

default: $display($time,, "ERROR: unsupported transfer
size: %d-byte", size);

endcase

@ (posedge HCLK);

while (HREADY!==1) @ (posedge HCLK);

HADDR <= #1 32'b0;

HPROT <= #1 4'b0000; //`HPROT_OPCODE

HTRANS <= #1 2'b0;

HBURST <= #1 3'b0;

HWRITE <= #1 1'b0;

HSIZE <= #1 3'b0;

HWDATA <= #1 data;

@ (posedge HCLK);

while (HREADY===0) @ (posedge HCLK);

if (HRESP!=2'b00) //if (HRESP!=`HRESP_OKAY)

$display($time,, "ERROR: non OK response write");

HWDATA <= #1 0;

@ (posedge HCLK);

end

endtask

Copyright © 2013-2017 by Ando Ki Introduction to BFM (16)

File-driven BFM example

File

handling

Read

task

Write

task

SSRAM

controller

(DUV)

SSRAM

AMBA

AHB

SSRAM

specifc

protocol

ahb_bfm_file

ahb_tasks

ahb_ssram_if k7a163600a_R05

top

Bus

transaction

commands

file

Use file to build testing scenario

This scheme does not need modify BFM

code even testing scenario changes.

w 4 00 11111111

……

r 4 00 11111111

……

W 2 08 00009ABC

……

R 2 08 00009ABC

……

w 1 0C 00000087

……

r 1 0C 00000087

9

Copyright © 2013-2017 by Ando Ki Introduction to BFM (17)

Native Code-driven BFM example

S
S

R
A

M

(k
7

a
1

6
3

6
0

0
a

_
R

0
5
)

 S
S

R
A

M
 c

o
n

tr
o

lle
r

(D
U

V
)

PLI/VPI

interface

Read

task

Write

task

ahb_bfm_socket

a
h

b
_

ta
s
k
s

S
o

c
k
e

t
lib

ra
ry

BFM API

S
o

c
k
e

t
lib

ra
ry

Testing

routine

top

AMBA

AHB

SSRAM

specifc

protocol

Testing program written in C

socket

HDL simulator domainC program domain

Use program to test

This scheme needs more advanced

techniques including VPI/PLI/DPI, IPC

and so on.

This scheme does not need modify BFM

code even testing scenario changes.

This scheme make it possible to develop

active/dynamic-verification scenario.

conditional check

conditional branch

PLI: Programming Language Interface

VPI: Verilog Programming Interface

DPI: Direct Programming Interface

Copyright © 2013-2017 by Ando Ki Introduction to BFM (18)

Native Code-driven Transactor with FPGA

S
S

R
A

M

(k
7

a
1

6
3

6
0

0
a

_
R

0
5
)

 S
S

R
A

M
 c

o
n

tr
o

lle
r

(D
U

V
)

PLI/VPI

interface

Read

task

Write

task

ahb_bfm_socket

a
h

b
_

ta
s
k
s

S
o

c
k
e

t
lib

ra
ry

BFM API

S
o

c
k
e

t
lib

ra
ry

Testing

routine

top

AMBA

AHB

SSRAM

specifc

protocol

Testing program written in C

socket

HDL simulatorC program

o
n
-b

o
a

rd
 S

S
R

A
M

(k
7

a
1

6
3

6
0

0
a
_
R

0
5
)

 S
S

R
A

M
 c

o
n

tr
o

lle
r

(D
U

V
)

host interface

A
H

B
 t
ra

n
s
a

c
to

r

BFM API

D
e

v
ic

e
 d

ri
v
e

r

Testing

routine

FPGA board

AMBA

AHB

SSRAM

specifc

protocol

Testing program written in C

USB

or PCI

AMB

AHB

BUS

iCON

FPGA board

FPGA
S
R
A
M

C program

10

Copyright © 2013-2017 by Ando Ki Introduction to BFM (19)

Reference

기안도, 시스템 집적 반도체 설계검증 환경과 기법, 제4장 BFM을 이용한 설계
자산의 기능검증, 홍릉과학출판사, 2008.

