BFM-Based Verification Methods

2013 - 2017

Ando Ki, Ph.D.
(adki@future-ds.com)

Agenda

= What is BFM

= Usage of BFM

= Task-based BFM

= File-driven BFM

= Native code-driven BFM

Copyright © 2013-2017 by Ando Ki Introductionto BFM ~ (2)

Test-bench

Test-bench
Comparing
Generating output and
input stimui \ expected
/i expected output) output
L '\U
- test vector
Test-bench

Coverage

Comparing
Generating output and
input stimui expected
Ji expected output) output

~~~~~~~~~~ test vector

Copyright © 2013-2017 by Ando Ki

& Test-bench is an environment that
verifies the functional and timing
correctness of the design under
verification (DUV) according to functional
and timing specifications.

® Test-bench should apply test cases, i.e.,
test vectors as many as possible in order
to cover everything that could happen to
that design.

& Coverage assessment is required to
measure how much has been verified.
4 code coverage

» measures which part of implemented
design has been exercised by the test
vectors

4 functional coverage

= measure how much functionality of the
design has been exercised by the
verification environment

Introductionto BFM ~ (3)

Self-checking test-bench

Test-bench
Post-
) Golden model —expecied output processor
Stimulus
generator
real output

Test-bench

Reference
model

reference output .

\".. Check quality
: of output

Stimulus
generator

Golden mode| —expecied ouput

% Check
J/ correctness in

DUV " terms of value

and timing

Copyright © 2013-2017 by Ando Ki

Introductionto BFM ~ (4)




Complex function design

C language
E. Algorithmic 2
22 model using o
TS floating— % B
o2 point 2L
29 (reference 5
= model) o

a) algorithmic validation

Copyright © 2013-2017 by Ando Ki

C language C language

c . Reference Reference

89 model model

L H

ag

3o Fixed—point Golden

= model M model '

b) golden model using fixed—point

Test pattern generator

RTL model

c¢) overall environment

HOL

I Reference I
I' model I

Fixed—point
model Y

HDL
C language

Reference
model

!

£
ss
g8
Qo
og
%5
O
&

Fixed—point
model

—

d) Timing accurate fixed—point

Test pattern generator

RTL model

e) overall environment

Introductionto BFM ~ (5)

How about bus-based system

= What does testing scenario mean for
bus-based system?
4 A combination of reads and writes
= What does expected result mean for bus-
based system?

Processor
model

Result
comparator

Stimulus

generator model

’ Memory ‘

Serial
model

(b) Desirable environment

your block

(a) Pattern driven simulation

Copyright © 2013-2017 by Ando Ki

(c) BFM-based verification

Introductionto BFM ~ (6)




What is BFM?

= BFM: Bus Functional Model, Bus
Functional Module

= BIM: Bus Interface Module

= BFM describes the behavior of the part
(e.g. CPU) at the interface-level (bus
transaction level) without modeling the
internal operation of the part.

= BFM is a functional model generates bus

transaction.

4+ A sort of transactor

= Testing Testing s
s | 2 program program I S
< o <
Ethernet [ % Ethernet o 7}
SSRAM PHY 2] ’ LCD ‘ ISS SSRAM ’ PHY 2] LCD
= e —E =45 SF SESE SE—
Ethernet Memory LCD Ethernet Memory LCD
TSR | SSRMI/F controller | controller controller | o | SSRM IIF controller | controller controller
ic it it ic A A EE EE
| (AR | | AHB |
ElS S it I
| AHB2APB | | DMA | | PIC | | Timer | | AHB2APB | | DMA | | PIC | | Timer |
= = = EE
| APB | APB |

Copyright © 2013-2017 by Ando Ki

Introductionto BFM (7))

Bus

C program

written in C [ ¥

C program

written in C

Usages of BFM

Testing
scenario
using
read/write
tasks

Bus signals

Bl 5y
commands 1
file

File
handling

N pLiveiDPI
interface

PLIVPI/DPI
interface

C prograr )
written in ]

PLI/VPI/DPI
interface

HDL

Bus signals Bus signals Bus signals Bus signals

Copyright © 2013-2017 by Ando Ki

(€) Remote SS-driven BFM

= Task-based BFM

= File-driven BFM

= Native-code driven BFM

= Embedded ISS-driven BFM
= Remote ISS-driven BFM

Introductionto BFM ~ (8)




Task-based BFM example

® 'task’ is a language construct of Verilog,
which is a kind of sub-routine can contain
time-controlling statements.

4 Note that 'function’ is a similar with 'task’,
but it should execute in zeri simulation

time.
top
ahb_bfm ahb_ssram_if Kk7a163600a_R05
: LS & Arelatively complex testing scenario can
ssraM\ | ( Read be build by combining tasks.
testing |\ | 5=k SSRAM
scer_\ario | controller SSRAM
reaciwr | | Y e Y o :
i SSRAM £ BFM code should be re-written when
AMBA h . .
' AHB Shecltc testing scenario changes.
| protocol
DUV: Design Under Verification
SSRAM: Synchronous Static Random Access Memory
Copyright © 2013-2017 by Ando Ki Introductionto BFM ~ (9)

AMBA AHB and SSRAM Timing Diagram

rpinininipininininininl
HADDR | }(AL — Az
HWRITE Y | T
<%0 conﬁ"gli :XE 7)@
Sg E| HwoaTA D1 )
22| hroata D2 |
HREADY
HRESP oKL ¢ oKZ(_ |
HSEL i/ | /AN
ADSCb _f L
o7 OEb
DQ EDC D2 P
w LY LY L
S e
Write Read

Copyright © 2013-2017 by Ando Ki Introductionto BFM  (10)




module top ;
reg HRESETN;
reg HCLK;
wire SRAM_CLK;

wire [31:0] SRAM_D;

wire [31:0] SRAM_D_O;

wire [31:0] SRAM_D_1;

wire SRAM_D_T;
1/
/I _T controls tri-state buffer; drive when low and
/I tristate when high
assign SRAM_D =SRAM_D_T ?32bz : SRAM_D_O;
assign SRAM_D_| = SRAM_D_T ? SRAM_D : 32'bz;
assign SRAM_DP = SRAM_DP_T ? 32'hz : SRAM_DP_O;
assign SRAM_DP_| = SRAM_DP_T ? SRAM_DP : 32'bz;

ahb_ssram_if Uahb_ssram_if (
\HRESETn (HRESETN),
HCLK  (HCLK ),

)

k7a163600a Usram (
.CLK (SRAM_CLK ),
A (SRAM_A[18:0]),

DQ (SRAM_D ),
.DQP (SRAM_DP )
)

/
always #5 HCLK <= ~HCLK;

! / initial begin

ahb_bfm #(0, 32'hFFF) Uahb_bfm ( HCLK =0;
HRESETNn(HRESETN), HRESETNn =0;
HCLK (HCLK), repeat (5) @ (posedge HCLK);
...... HRESETNn =1,

); end

endmodule
Copyright © 2013-2017 by Ando Ki Introductionto BFM ~ (11)

bfm.v (1/2)

module ahb_bfm (... ... H

parameter START_ADDR=0;

parameter DEPTH_ADDR=32'h100;

parameter END_ADDR=START_ADDR+DEPTH_ADDR-1;

input HRESETN; wire HRESETn;
input HCLK; wire HCLK;

output HBUSREQ; reg HBUSREQ;
input HGRANT; wire HGRANT;

output [31:0] HADDR;
output [3:0] HPROT;

reg [31:0] HADDR;
reg [3:0] HPROT;

output HLOCK; reg HLOCK;
output [1:0] HTRANS; reg [1:0] HTRANS;
output HWRITE; reg HWRITE;

output [2:0] HSIZE; reg [2:0] HSIZE;
output [2:0] HBURST; reg [2:0] HBURST;
output [31:0] HWDATA; reg [31:0] HWDATA;
input [31:0] HRDATA; wire [31:0] HRDATA;
input [1:0] HRESP; wire [1:0] HRESP;

initial begin
HBUSREQ = 0;
HADDR =0;

HPROT =0;
HLOCK =0;

1'bx) @ (posedge HCLK);
1'b1l) @ (posedge HCLK);
while (HRESETn===1'b0) @ (posedge HCLK);
repeat (3) @ (posedge HCLK);

memory_tes . . N 1),
memory_test(START_ADDR, END_ADDR, 2);
memory_test(START_ADDR, END_ADDR, 4);

input HREADY; wire HREADY; repea posedge HCLK);
input IRQn; wire IRQn; $finish(2);
input FIQn; wire FIQn; end
Testing
scenario
Copyright © 2013-2017 by Ando Ki Introductionto BFM  (12)




bfm.v (2/2)

/

1 Test scenario comes here.
task memory_test;
input [31:0] start; // start address
input [31:0] finish; // end address
input [2:0] size; // datasize: 1, 2,4
integer i, error;
reg [31:0] data, gen, got;
reg [31:0] reposit{START_ADDR:END_ADDR];
begin

‘inc

endm

error = 0;
gen = $random(7);
for (i=start; i<(finish-size+1); i=i+size) begin
gen = $random&~32'b0;
data = align(i, gen, size);
ahb_write(i, size, data);
ahb_read(j, size, got);
got = align(i, got, size);

ude "ahb_tasks.v"

odule

Testing scenario

Copyri

ght © 2013-2017 by Ando Ki

in details

Introductionto BFM  (13)

ahb_tasks.v: AHB read tasks

task ahb_read;
input [31:0] address;
input [2:0] size;
output [31:0] data;
begin

@ (posedge HCLK);

HBUSREQ <= #1 1'b1;

@ (posedge HCLK);

while (HGRANT!==1'b1)||(HREADY!==1'b1)) @ (posedge

HBUSREQ <= #1 1'b0;

HADDR <= #1 address;

HPROT <= #1 4'b0001; //"HPROT_DATA
HTRANS <= #1 2'b10; //"HTRANS_NONSEQ;
HBURST <= #1 3'b000; //"HBURST_SINGLE;
HWRITE <=#11'b0; /"HWRITE_READ;
case (size)

1: HSIZE <= #1 3'b000; //"HSIZE_BYTE;

2: HSIZE <= #1 3'b001; //"HSIZE_HWORD;

4: HSIZE <= #1 3'b010; //'HSIZE_WORD;
default: $display($time,, "ERROR: unsupported transfer

size: %d-byte", size);

endcase

@ (posedge HCLK);
while (HREADY!==1'b1) @ (posedge HCLK);
HADDR <= #1 32'h0;
HPROT <= #1 4'b0000; //"HPROT_OPCODE
HTRANS <= #1 2'b0;
HBURST <= #1 3'b0;
HWRITE <= #1 1'b0;
HSIZE <= #1 3'b0;
@ (posedge HCLK);
while (HREADY===0) @ (posedge HCLK);
data = HRDATA; // must be blocking
if (HRESP!=2'b00) //if (HRESP!="HRESP_OKAY)
$display($time,, "ERROR: non OK response for read");
@ (posedge HCLK);
end

endtask

Copyright © 2013-2017 by Ando Ki

Introduction to BFM

(14)




ahb_tasks.v: AHB write tasks

task ahb_write;
input [31:0] address;
input [2:0] size;
input [31:0] data;
begin
@ (posedge HCLK);
HBUSREQ <= #11;
@ (posedge HCLK);
\;vhile ((HGRANT!==1'h1)||(HREADY!==1'b1)) @ (posedge

HBUSREQ <= #1 1'b0;

HADDR <= #1 address;

HPROT <= #1 4'b0001; /" HPROT_DATA
HTRANS <=#1 2'b10; /'HTRANS_NONSEQ;
HBURST <= #1 3'b000; //"HBURST_SINGLE;
HWRITE <=#1 1'b1; //'HWRITE_WRITE;

@ (posedge HCLK);

while (HREADY!==1) @ (posedge HCLK);

HADDR <= #1 32'b0;

HPROT <= #1 4'b0000; //"HPROT_OPCODE

HTRANS <= #1 2'b0;

HBURST <= #1 3'h0;

HWRITE <= #1 1'b0;

HSIZE <=#1 3'b0;

HWDATA <= #1 data;

@ (posedge HCLK);

while (HREADY===0) @ (posedge HCLK);

if (HRESP!=2'b00) //if (HRESP!="HRESP_OKAY)
$display($time,, "ERROR: non OK response write");

HWDATA <= #1 0;

@ (posedge HCLK);

case (size) end
1: HSIZE <= #1 3b000; //'HSIZE_BYTE; endtask
2: HSIZE <=#1 3'b001; //'HSIZE_HWORD;
4: HSIZE <= #1 3'b010; //"HSIZE_WORD;
default: $display($time,, "ERROR: unsupported transfer
size: %d-byte", size);
endcase
Copyright © 2013-2017 by Ando Ki Introductionto BFM  (15)
File-driven BFM example
& Use file to build testing scenario
& This scheme does not need modify BFM
code even testing scenario changes.
top
ahb_bfm_file ahb_ssram_if k7a163600a_R05
T ahb_tasks
: Read
RNa=K N w4 00 11111111
s on haﬁ!ﬁn | ¢ Y controller SSRAM
commands 91 v VI (Buy) |V v 4 00 1111
file | r
i AEA S
| protocol | |\ e
W 2 08 00009ABC
R 2 08 00009ABC
w 1 0C 00000087
r 1 0C 00000087
Copyright © 2013-2017 by Ando Ki Introductionto BFM (16




Native Code-driven BFM example

E Use program to test

® This scheme needs more advanced
techniques including VPI/PLI/DPI, IPC
and so on.

Testing program written in C to

P
ahb_bfm_socket

® This scheme does not need modify BFM

T
| (e g code even testing scenario changes.
&l g 1 \task )¢ 4
Testing | [ gevapr | 2 = | PLVPI | E‘ g
routine g % interface | % é ) ) )
A [ socket| | |7 ! £|| ® This scheme make it possible to develop
|

active/dynamic-verification scenario.
C program domain FDL smufator domain 4 conditional check
4 conditional branch

PLI: Programming Language Interface
VPI: Verilog Programming Interface
DPI: Direct Programming Interface

Copyright © 2013-2017 by Ando Ki Introductionto BFM (17

Native Code-driven Transactor with FPGA

Testing program written in C top Testing program written in C FPGA board
ahb_bfm_socket host interface
T

| = -
| (Read 3 - =8
g task ) 2 c 5 ] S&
§lh § I % p g g £g
Testing 2 2 | puve | £ S Testing k= (u— 3 LN ave 28
N BFMAPI| g 8 | interf 2 2 ; 3 5 AHB =2
routine g $ | interface || 2 8 routine 8 g 3 23
B T([E | (e ® g N e ™ it

@ @ 2
socket | < 8[| uss z lAvBAl £<
i or PCI o=

-

Copyright © 2013-2017 by Ando Ki Introductionto BFM ~ (18)




Reference

B E, A8 HA vk AAAS 343 719, Al47 BEMS o] 83 A7)
Ak 715 A S, 5= AL, 2008.

’

Copyright © 2013-2017 by Ando Ki Introductionto BFM ~ (19)




