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Test-bench is an environment that 
verifies the functional and timing 
correctness of the design under 
verification (DUV) according to functional 
and timing specifications.

Test-bench should apply test cases, i.e., 
test vectors as many as possible in order 
to cover everything that could happen to 
that design.

Coverage assessment is required to 
measure how much has been verified.

code coverage

measures which part of implemented 
design has been exercised by the test 
vectors

functional coverage

measure how much functionality of the 
design has been exercised by the 
verification environment 
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How about bus-based system
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(a) Pattern driven simulation (b) Desirable environment (c) BFM-based verification

Result 

comparator

What does testing scenario mean for 

bus-based system?

A combination of reads and writes

What does expected result mean for bus-

based system?
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What is BFM?

BFM: Bus Functional Model, Bus 

Functional Module

BIM: Bus Interface Module

BFM is a functional model generates bus 

transaction.
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BFM describes the behavior of the part

(e.g. CPU) at the interface-level (bus 

transaction level) without modeling the 

internal operation of the part.

A sort of transactor
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Usages of BFM
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Task-based BFM example
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top

'task' is a language construct of Verilog, 

which is a kind of sub-routine can contain 

time-controlling statements.

Note that 'function' is a similar with 'task', 

but it should execute in zeri simulation 

time.

A relatively complex testing scenario can 

be build by combining tasks.

BFM code should be re-written when 

testing scenario changes.

DUV: Design Under Verification

SSRAM: Synchronous Static Random Access Memory
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AMBA AHB and SSRAM Timing Diagram
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top.v

module top ;

reg         HRESETn;

reg         HCLK;

... ...

wire        SRAM_CLK;

... ...

wire [31:0] SRAM_D;

wire [31:0] SRAM_D_O;

wire [31:0] SRAM_D_I;

wire           SRAM_D_T;

//--------------------------------------------------

// _T controls tri-state buffer; drive when low and

// tristate when high

assign SRAM_D    = SRAM_D_T  ? 32'bz   : SRAM_D_O;

assign SRAM_D_I  = SRAM_D_T  ? SRAM_D  : 32'bz;

assign SRAM_DP   = SRAM_DP_T ? 32'bz   : SRAM_DP_O;

assign SRAM_DP_I = SRAM_DP_T ? SRAM_DP : 32'bz;

/*********************************************************/

ahb_bfm #(0, 32'hFFF) Uahb_bfm (

.HRESETn(HRESETn),

.HCLK   (HCLK),

... ...

);

... ...

... ...

ahb_ssram_if Uahb_ssram_if (

.HRESETn   (HRESETn ),

.HCLK      (HCLK    ),

... ...

);

k7a163600a Usram (

.CLK   (SRAM_CLK  ),

.A     (SRAM_A[18:0]),

... ...

.DQ    (SRAM_D    ),

.DQP   (SRAM_DP   )

);

/*********************************************************/

always #5 HCLK <= ~HCLK;

initial begin

HCLK    = 0;

HRESETn = 0;

repeat (5) @ (posedge HCLK);

HRESETn = 1;

end

endmodule
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bfm.v (1/2)

module ahb_bfm (   ... ...  );

parameter START_ADDR=0;

parameter DEPTH_ADDR=32'h100;

parameter END_ADDR=START_ADDR+DEPTH_ADDR-1;

input         HRESETn; wire        HRESETn;

input         HCLK;    wire        HCLK;

output        HBUSREQ; reg         HBUSREQ;

input         HGRANT;  wire        HGRANT;

output [31:0] HADDR;   reg  [31:0] HADDR;

output [3:0]  HPROT;   reg  [3:0]  HPROT;

output        HLOCK;   reg         HLOCK;

output [1:0]  HTRANS;  reg  [1:0]  HTRANS;

output        HWRITE;  reg         HWRITE;

output [2:0]  HSIZE;   reg  [2:0]  HSIZE;

output [2:0]  HBURST;  reg  [2:0]  HBURST;

output [31:0] HWDATA;  reg  [31:0] HWDATA;

input  [31:0] HRDATA;  wire [31:0] HRDATA;

input  [1:0]  HRESP;   wire [1:0]  HRESP;

input         HREADY;  wire        HREADY;

input         IRQn;    wire        IRQn;

input         FIQn;    wire        FIQn;

initial begin

HBUSREQ = 0;

HADDR   = 0;

HPROT   = 0;

HLOCK   = 0;

HTRANS  = 0;

HWRITE  = 0;

HSIZE   = 0;

HBURST  = 0;

HWDATA  = 0;

while  (HRESETn===1'bx) @ (posedge HCLK);

while  (HRESETn===1'b1) @ (posedge HCLK);

while  (HRESETn===1'b0) @ (posedge HCLK);

repeat (3) @ (posedge HCLK);

memory_test(START_ADDR, END_ADDR, 1);

memory_test(START_ADDR, END_ADDR, 2);

memory_test(START_ADDR, END_ADDR, 4);

repeat (5) @ (posedge HCLK);

$finish(2);

end

Testing 

scenario
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bfm.v (2/2)

/*********************************************************/

// Test scenario comes here.

task memory_test;

input [31:0] start;  // start address

input [31:0] finish; // end address

input [2:0]  size;   // data size: 1, 2, 4

integer i, error;

reg [31:0] data, gen, got;

reg [31:0] reposit[START_ADDR:END_ADDR];

begin

error = 0;

gen = $random(7);

for (i=start; i<(finish-size+1); i=i+size) begin

gen = $random&~32'b0;

data = align(i, gen, size);

ahb_write(i, size, data);

ahb_read(i, size, got);

got = align(i, got, size);

...

...

`include "ahb_tasks.v"

endmodule

Testing scenario 

in details
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ahb_tasks.v: AHB read tasks

task ahb_read;

input  [31:0] address;

input  [2:0]  size;

output [31:0] data;

begin

@ (posedge HCLK);

HBUSREQ <= #1 1'b1;

@ (posedge HCLK);

while ((HGRANT!==1'b1)||(HREADY!==1'b1)) @ (posedge 
HCLK);

HBUSREQ <= #1 1'b0;

HADDR   <= #1 address;

HPROT   <= #1 4'b0001; //`HPROT_DATA

HTRANS  <= #1 2'b10;  //`HTRANS_NONSEQ;

HBURST  <= #1 3'b000; //`HBURST_SINGLE;

HWRITE  <= #1 1'b0;   //`HWRITE_READ;

case (size)

1:  HSIZE <= #1 3'b000; //`HSIZE_BYTE;

2:  HSIZE <= #1 3'b001; //`HSIZE_HWORD;

4:  HSIZE <= #1 3'b010; //`HSIZE_WORD;

default: $display($time,, "ERROR: unsupported transfer 
size: %d-byte", size);

endcase

@ (posedge HCLK);

while (HREADY!==1'b1) @ (posedge HCLK);

HADDR  <= #1 32'b0;

HPROT  <= #1 4'b0000; //`HPROT_OPCODE

HTRANS <= #1 2'b0;

HBURST <= #1 3'b0;

HWRITE <= #1 1'b0;

HSIZE  <= #1 3'b0;

@ (posedge HCLK);

while (HREADY===0) @ (posedge HCLK);

data = HRDATA; // must be blocking

if (HRESP!=2'b00) //if (HRESP!=`HRESP_OKAY)

$display($time,, "ERROR: non OK response for read");

@ (posedge HCLK);

end

endtask
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ahb_tasks.v: AHB write tasks

task ahb_write;

input  [31:0] address;

input  [2:0]  size;

input  [31:0] data;

begin

@ (posedge HCLK);

HBUSREQ <= #1 1;

@ (posedge HCLK);

while ((HGRANT!==1'b1)||(HREADY!==1'b1)) @ (posedge 
HCLK);

HBUSREQ <= #1 1'b0;

HADDR   <= #1 address;

HPROT   <= #1 4'b0001; //`HPROT_DATA

HTRANS  <= #1 2'b10;  //`HTRANS_NONSEQ;

HBURST  <= #1 3'b000; //`HBURST_SINGLE;

HWRITE  <= #1 1'b1;   //`HWRITE_WRITE;

case (size)

1:  HSIZE <= #1 3'b000; //`HSIZE_BYTE;

2:  HSIZE <= #1 3'b001; //`HSIZE_HWORD;

4:  HSIZE <= #1 3'b010; //`HSIZE_WORD;

default: $display($time,, "ERROR: unsupported transfer 
size: %d-byte", size);

endcase

@ (posedge HCLK);

while (HREADY!==1) @ (posedge HCLK);

HADDR  <= #1 32'b0;

HPROT  <= #1 4'b0000; //`HPROT_OPCODE

HTRANS <= #1 2'b0;

HBURST <= #1 3'b0;

HWRITE <= #1 1'b0;

HSIZE  <= #1 3'b0;

HWDATA <= #1 data;

@ (posedge HCLK);

while (HREADY===0) @ (posedge HCLK);

if (HRESP!=2'b00) //if (HRESP!=`HRESP_OKAY)

$display($time,, "ERROR: non OK response write");

HWDATA <= #1 0;

@ (posedge HCLK);

end

endtask
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File-driven BFM example
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This scheme does not need modify BFM 

code even testing scenario changes.
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Native Code-driven BFM example
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Use program to test

This scheme needs more advanced 

techniques including VPI/PLI/DPI, IPC 

and so on.

This scheme does not need modify BFM 

code even testing scenario changes.

This scheme make it possible to develop 

active/dynamic-verification scenario.

conditional check

conditional branch

PLI: Programming Language Interface

VPI: Verilog Programming Interface

DPI: Direct Programming Interface

Copyright © 2013-2017 by Ando Ki Introduction to BFM      ( 18 )

Native Code-driven Transactor with FPGA
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