
1

Arbiter Project

Ando Ki, Ph.D.

(adki@future-ds.com)

2017

Copyright © 2017 by Ando Ki Bus and Protocol (2)

Agenda

Pure priority-based arbiter Arbiter with fairness

2

Copyright © 2017 by Ando Ki

Testing environment

req[]

stimulus

arbiter

check

grt[]

id[]

pre_id[]

pre_grt[]

arbiter

block under testing

stimulus

generating stimulus

check

checking validity

Arbiter (3)

Copyright © 2017 by Ando Ki

Signals and timing

Say N-bit request

i.e., N masters

req[N-1:0]

Where req[0] has the highest priority

grt[N-1:0]

grt[0] corresponds to req[0]

id[M:0]

which master has grant

M = log2(N)

id[M] is valid flag

i.e., id[M]=0 means there is no winer

Arbiter (4)

clk

(highest priority) REQ0

REQ1

GRT0

GRT1

3

Copyright © 2017 by Ando Ki

Prepare your own priority-based arbiter

Go to $(PROJECT)/arbiter_project/arbiter_priority directory

You have to fill ‘rtl/verilog/arbiter.v’ file

Then, go to ‘sim/modelsim’ directory

‘sim_define.v’

‘WIDTH’ determines the number of maters, i.e., N

‘CYCLES’ determines the number of cycles to test

‘HOLD’ specifies the number of cycles to keep ‘req’ high after getting ‘grt’

‘INTV’ specifies the number of cycles to drive ‘req’ high again after de-asserting

Run simulator

$ make

Arbiter (5)

clk

REQ0

GRT0

HOLD

INTV

Copyright © 2017 by Ando Ki

Simulation results

Arbiter (6)

Not fair

4

Copyright © 2017 by Ando Ki

Simulation results

Arbiter (7)

Check for different ‘WIDTH’, ‘HOLD’, and ‘INTV’.

Copyright © 2017 by Ando Ki

Priority encoder

Pure priority encoder

How to keep grant high while its

request remains high.

Even a higher request joins.

Arbiter (8)

module priority

(input wire [2:0] req

, output reg [2:0] grt

);

always @ (req) begin

if (req[0]) grt <= 3'b001;

else if (req[1]) grt <= 3'b010;

else if (req[2]) grt <= 3'b100;

else grt <= 3'b000;

end // always

endmodule

Note that ‘req[0]’ has highest priority.

5

Copyright © 2017 by Ando Ki

Priority encoder

Pure priority encoder

Arbiter (9)

module priority
(input wire rset_n

, input wire clk
, input wire [2:0] req
, output reg [2:0] grt=3'h0

);
always @ (posedge clk or negedge rst_n) begin
if (rst_n==1'b0) grt <= 3'h0;
else casex ({req,grt})

// priority
6'b1xx_000: grt <= 3'b100;
6'b01x_000: grt <= 3'b010;
6'b001_000: grt <= 3'b001;
// stay
6'b1xx_100: grt <= 3'b100;
6'bx1x_010: grt <= 3'b010;
6'bxx1_001: grt <= 3'b001;
// last
6'b000_xxx: grt <= 3'b000;
// last and handover
6'b01x_100: grt <= 3'b010;
6'b001_100: grt <= 3'b001;
6'b10x_010: grt <= 3'b100;
6'b001_010: grt <= 3'b001;
6'b1x0_001: grt <= 3'b100;
6'b010_001: grt <= 3'b010;
default : grt <= 3'b000;

endcase
end // always

endmodule Note that ‘req[2]’ has highest priority.

Copyright © 2017 by Ando Ki

Prepare your own improved arbiter

Go to $(PROJECT)/arbiter_project/arbiter_fair directory

You have to fill ‘rtl/verilog/arbiter_fair.v’ file

Then, go to ‘sim/modelsim’ directory

‘sim_define.v’

‘WIDTH’ determines the number of maters, i.e., N

‘CYCLES’ determines the number of cycles to test

‘HOLD’ specifies the number of cycles to keep ‘req’ high after getting ‘grt’

‘INTV’ specifies the number of cycles to drive ‘req’ high again after de-asserting

Run simulator

$ make

Arbiter (10)

clk

REQ0

GRT0

HOLD

INTV

6

Copyright © 2017 by Ando Ki

Simulation results

Arbiter (11)

Fair

Copyright © 2017 by Ando Ki

Simulation results

Arbiter (12)

Check for different ‘WIDTH’, ‘HOLD’, and ‘INTV’.

7

Copyright © 2017 by Ando Ki

Basic structure

pure
priority
arbiter

pure
priority
arbiter

MUX

mask
regiter

masking 0

1

S

req[]

grt[]

none

'pure priority arbiter': priority-based

arbiter (combinational logic)

'mask register': logical OR with old

and new mask

'MUX': select one of two results,

where masked results select

Arbiter (13)

