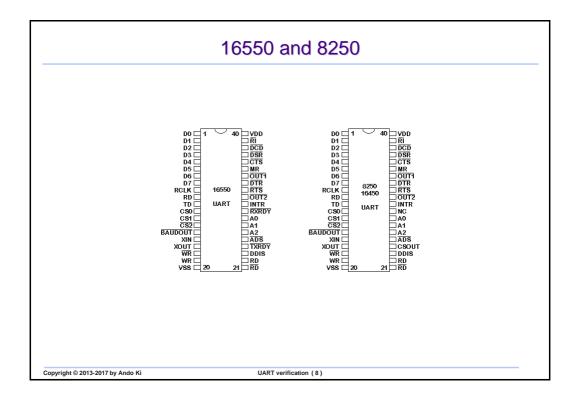
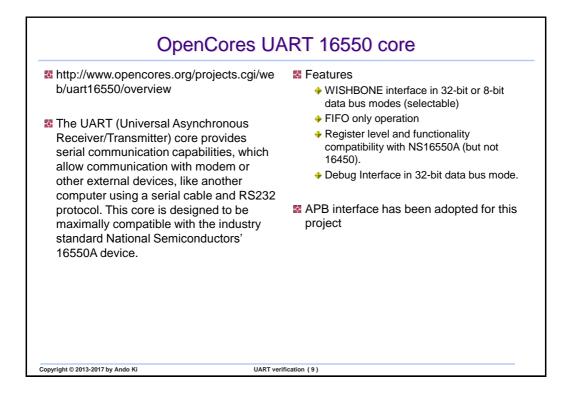


	Agenda
 RS-232C protocol RS-232C and UART UART and line driver Type of UARTS OpenCores UART 16550 core Frame format Baud rate control Initialize How to transmit a character How to receive a character UART HW spec. How to control HW through SW Verification plan APB BFM and APB tasks TTY model Simulation 	
Copyright © 2013-2017 by Ando Ki	UART verification (2)





	remarks
8250	The first UART in this line. It doesn't contain any scratch registers. 8250A is a modernized version of 8250, its bus operating speed is very fast.
8250A	The bus operating speed of this UART is greater than 8250's. It is used in the same way as 16450 in the sphere of software.
8250B	Very similar to that of the 8250 UART.
16450	Used in AT's (Improved bus speed over 8250's). Works stable at 38.4KBPS. Widespread today.
16550	This line is the first generation of buffered UART. This line has 16-byte buffer, however it doesn't work and is replaced with the 16550A.
16550A	This line is the most widespread UART version used for high-speed connection of moderns with 14.4KBPS and 28.8KBPS rates. They made sure the FIFO buffers worked on this UART.
16650	New generation of UART. Contains 32 bytes of FIFO, programmed register of X-On/X-Off characters and supports power management.
16750	Produced by Texas Instruments. Contains 64-byte FIFO buffer.

Name		Addr	W	V Access	Description	
Receiver Buffer	RB	0	8	R	Receiver FIFO output	
Transmitter Holding Register	THR	0	8	W	Transmit FIFO input	
Interrupt Enable	IER	1	8	RW	Enable/Mask interrupts generated by the UART	
Interrupt Identification	IIR	2	8	R	Get interrupt information	
FIFO Control	FCR	2	8	W	Control FIFO options	
Line Control Register	LCR	3	8	RW	Control connection	
Modem Control	MCR	4	8	W	Controls modem	
Line Status	LSR	5	8	R	Status information	
Modem Status	MSR	6	8	R	Modem Status	

Copyright © 2013-2017 by Ando Ki

UART verification (10)

Name		Addr	W	Access	Description
Divisor Latch Byte 1 (LSB)	CDRI	0	8	RW	The LSB of the divisor latch
Divisor Latch Byte 2	CDRh	1	8	RW	The MSB of the divisor latch
Two clock divisor re The CDR is accesse					

Bit #	Access	Description	
0	RW	Received Data available interrupt '0' – disabled '1' – enabled	
1	RW	Transmitter Holding Register empty interrupt '0' – disabled '1' – enabled	
2	RW	Receiver Line Status Interrupt '0' – disabled '1' – enabled	
3	RW	Modem Status Interrupt '0' – disabled '1' – enabled	
7-4	RW	Reserved. Should be logic '0'.	
			Reset value: 001

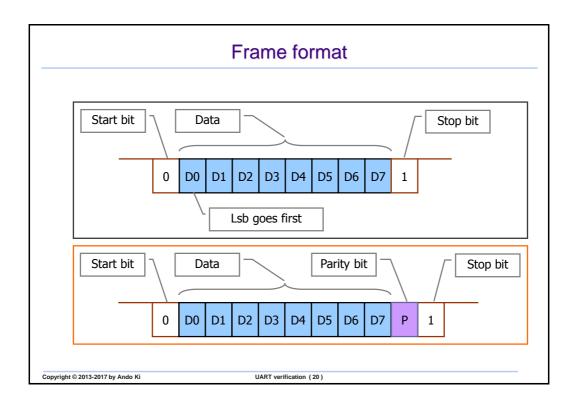
bit		pr Interrupt Type		Interrupt Type	Interrupt Source	Interrupt Reset Control
3	2	1] i			
0	1	1	1	Receiver Line Status	Parity, Overrun or Framing errors or Break Interrupt	Reading the Line Status Register
0	1	0	2	Receiver Data available	FIFO trigger level reached	FIFO drops below trigger level
1	1	0	2	Timeout Indication	There's at least 1 character in the FIFO but no character has been input to the FIFO or read from it for the last 4 Char times.	Reading from the FIFO (Receiver Buffer Register)
0	0	1	3	Transmitter Holding Register empty	Transmitter Holding Register Empty	Writing to the Transmitter Holding Register or reading IIR.
0	0	0	4	Modem Status	CTS, DSR, RI or DCD.	Reading the Modem status register.
						Reset value; C

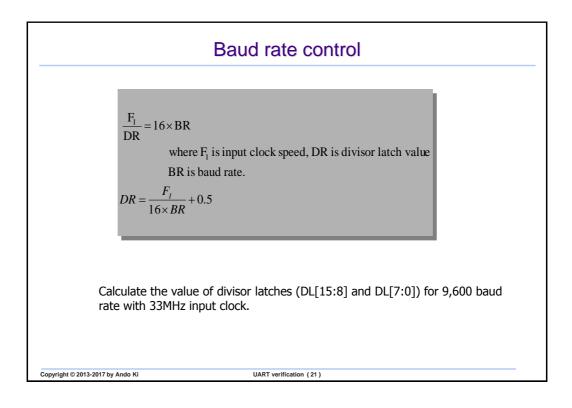
Bit #	Access	Description
0	W	Ignored (Used to enable FIFOs in NS16550D). Since this UART only supports FIFO mode, this bit is ignored.
1	W	Writing a '1' to bit 1 clears the Receiver FIFO and resets its logic. But it doesn't clear the shift register, i.e. receiving of the current character continues.
2	W	Writing a '1' to bit 2 clears the Transmitter FIFO and resets its logic. The shift register is not cleared, i.e. transmitting of the current character continues.
5-3	W	Ignored
7-6	W	Define the Receiver FIFO Interrupt trigger level '00' – 1 byte '01' – 4 bytes '10' – 8 bytes '11' – 14 bytes

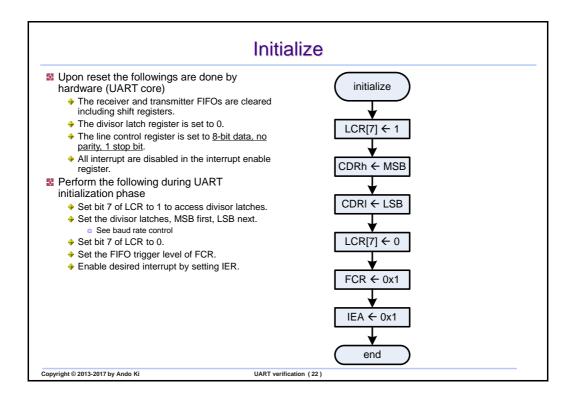
Reset value: COh

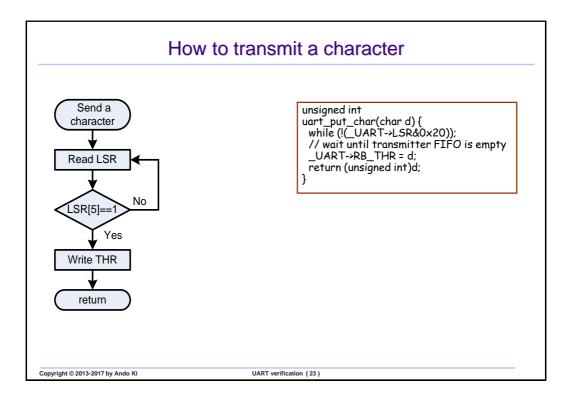
Copyright © 2013-2017 by Ando Ki

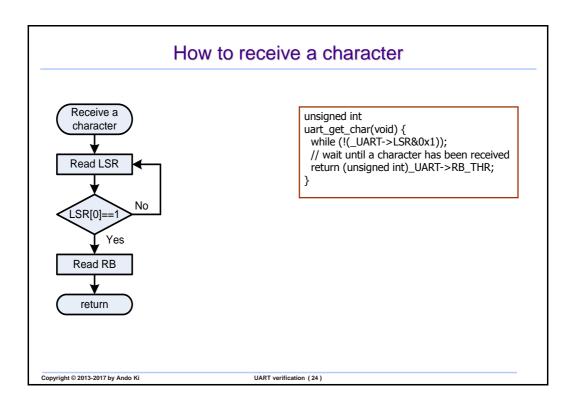
UART verification (14)

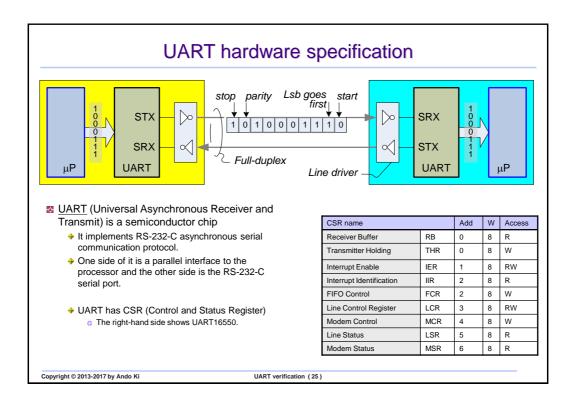

Bit #	Access	Description
1-0	RW	Select number of bits in each character '00' – 5 bits; '01' – 6 bits; '10' – 7 bits; '11' – 8 bits
2	RW	Specify the number of generated stop bits '0' – 1 stop bit '1' – 1.5 stop bits when 5-bit character length selected and 2 bits otherwise Note that the receiver always checks the first stop bit only.
3	RW	Parity Enable '0' – No parity '1' – Parity bit is generated on each outgoing character and is checked on each incoming one.
4	RW	Even Parity select '0' – Odd number of '1' is transmitted and checked in each word (data and parity combined). In other words, if the data has an even number of '1' in it then the parity bit is '1'. '1' – Even number of '1' is transmitted in each word.

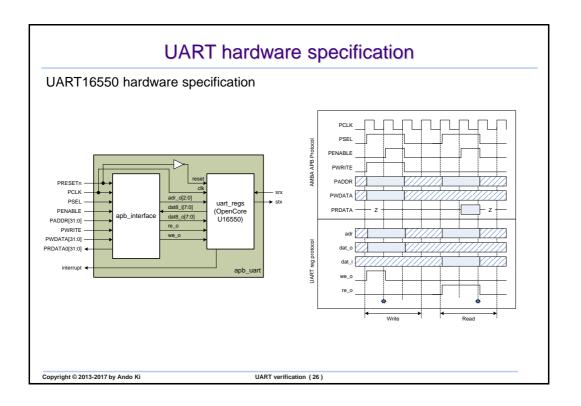

ransmitted and checked as ity bit is transmitted and
state).
k

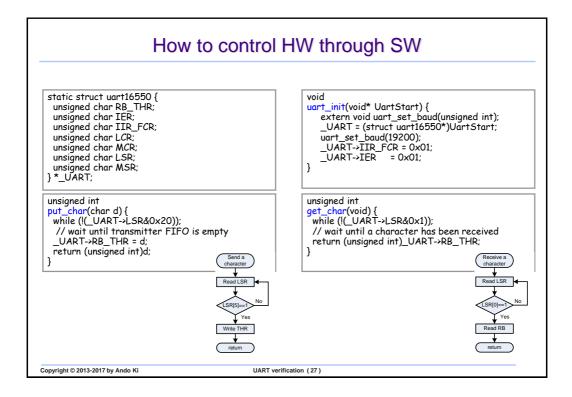

Bit #	Access	Description
0	R	Data Ready (DR) indicator. '0' – No characters in the FIFO '1' – At least one character has been received and is in the FIFO.
1	R	Overrun Error (OE) indicator '1' – If the FIFO is full and another character has been received in the receiver shift register. If another character is starting to arrive, it will overwrite the data in the shift register but the FIFO will remain intact. The bit is cleared upon reading from the register. Generates Receiver Line Status interrupt. '0' – No overrun state
2	R	Parity Error (PE) indicator '1' – The character that is currently at the top of the FIFO has been received with parity error. The bit is cleared upon reading from the register. Generates Receiver Line Status interrupt. '0' – No parity error in the current character

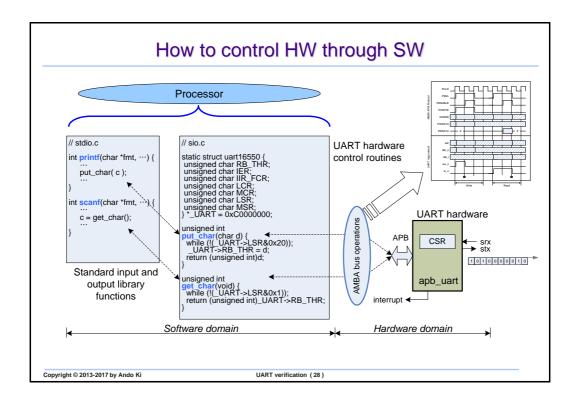

Bit #	Access	Description
3	R	 Framing Error (FE) indicator '1' – The received character at the top of the FIFO did not have a valid stop bit. Of course, generally, it might be that all the following data is corrupt. The bit is cleared upon reading from the register. Generates Receiver Line Status interrupt. '0' – No framing error in the current character
4	R	Break Interrupt (BI) indicator '1' –A break condition has been reached in the current character. The break occurs when the line is held in logic 0 for a time of one character (start bit + data + parity + stop bit). In that case, one zero character enters the FIFO and the UART waits for a valid start bit to receive next character. The bit is cleared upon reading from the register. Generates Receiver Line Status interrupt. '0' – No break condition in the current character

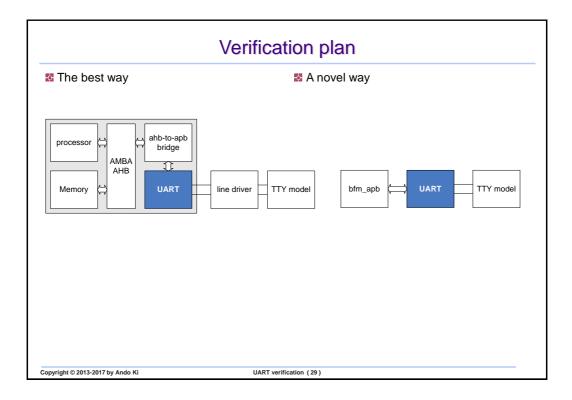

Bit #	Access	Description
5	R	Transmit FIFO is empty. '1' – The transmitter FIFO is empty. Generates Transmitter Holding Register Empty interrupt. The bit is cleared when data is being been written to the transmitter FIFO. '0' – Otherwise
6	R	Transmitter Empty indicator. '1' – Both the transmitter FIFO and transmitter shift register are empty. The bit is cleared when data is being been written to the transmitter FIFO. '0' – Otherwise
7	R	 '1' – At least one parity error, framing error or break indications have been received and are inside the FIFO. The bit is cleared upon reading from the register. '0' – Otherwise.
		5

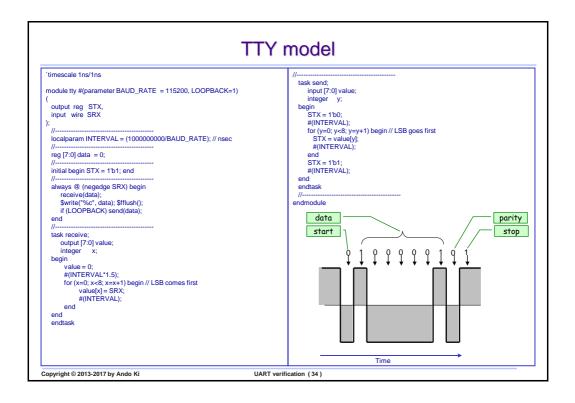


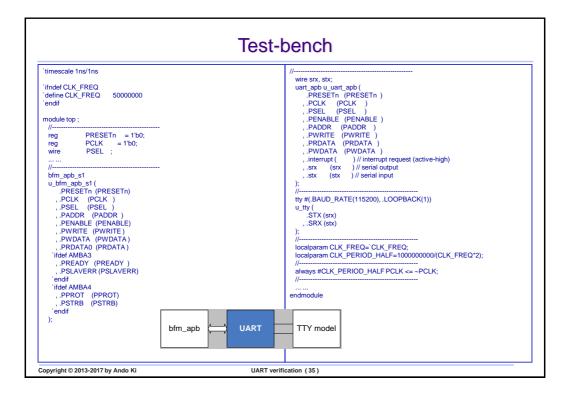


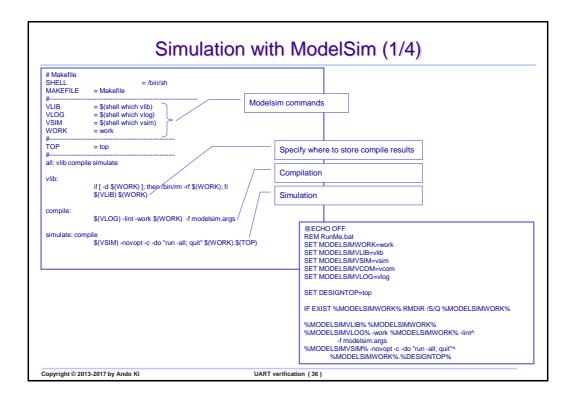




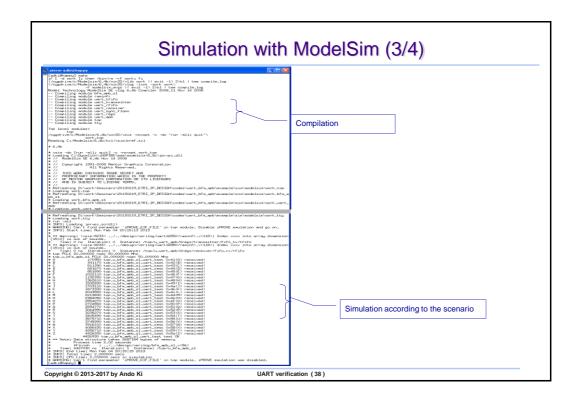


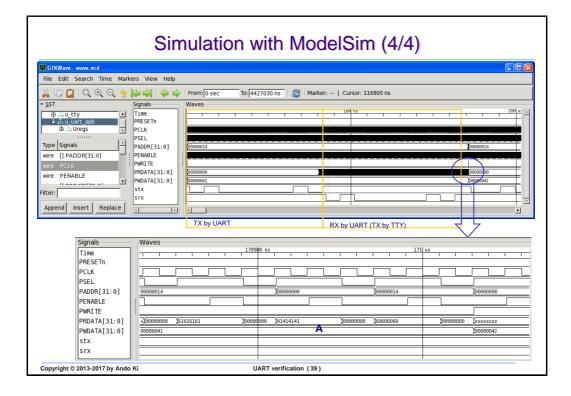


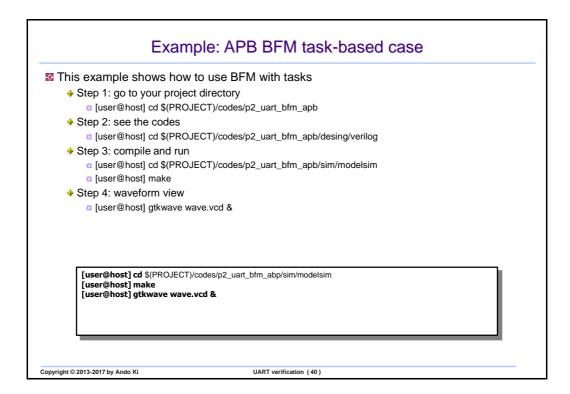

APB BFM: module			
timescale 1ns/1ns			
<pre>nodule bfm_apb_s1 #(parameter P_ADDR_START0 = 16'h0000, P_ADDR_SIZE0 = 16'h00 input wire PCLK , output reg PSEL , output reg PSEL , output reg PENABLE , output reg PENABLE , output reg PINABLE , output reg [31:0] PVDATA , input wire [31:0] PVDATA , input wire [31:0] PVDATA , input wire [31:0] PRDATA0 ; reg [31:0] freq; real stamp_x, stamp_y, delta; initial begin PSEL = 11b0; PADDR = -32:h0; PPNABLE = 11b0; PVMAITE = 1'b0; PVMAITA = -32:h0; PPROT = 3'h0; PSTRB = 4th0; wait (PRESETn==150); Wait (PRESETn==</pre>		alculate frequency	
(e) (posedge PCLK); stamp_y = stamp_y, stamp_y, enal = stamp_y = stamp_y, (e) (negdege PCLK); stamp_y, (e) (freq = 1000000000/delta; repeat (3) @ (posedge PCLK); uart_test(freq, 115200); repeat (5) @ (posedge PCLK); \$finish(2); end		II UART testing scenario	

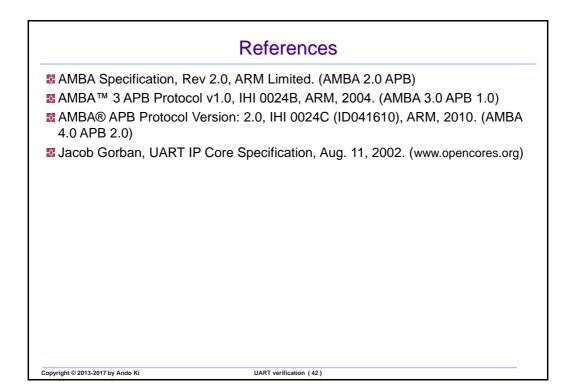

nteger err; //	
, ask uart_test; input [31:0] freq; input [31:0] baud; reg [7:0] dat;	
integer idx;	initialize UART
begin err = 0; //	
)/-init_uart(freq.// input [31:0] frea; , baud // input [31:0] baud);	Send a character
// for (idx="A"; idx<="Z"; idx = idx + 1) begin	Receive a character
<pre>send_a_character(idx[7:0]); receive_a_character(idx]; if (dat>=8h208&dat<=8h7E) \$display(\$time,,"%m 0x%x(%c) received!", dat, dat); else \$display(\$time,,"%m 0x%x received!", dat); if (idx[7:0]!==dat) begin err = err + 1; \$display(\$time,,"%m ERROR 0x%x received, but 0x%x expected", dat, idx[7:0]); end end //</pre>	
if (err==0) \$display(\$time,,"%m test OK*); end endtask	APB bus tasks
Inclusk /	UART handling tasks

// U16550 CSR address localparam RB_THR =0 , IER =4 , IIR_FCR =8 , LCR =12 (initialize)		UA
$\begin{array}{c} , MCR = 16 \\ , LSR = 20 \\ , MSR = 24; \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		am RB_THR =0 ER =4 R_FCR =8 CR =12 CR =16 SR =20; Initialize UART CP [31:0] freq; [31:0] baud; [31:0] baud; [31:0] di; write(LCR, 32h83, 4); write(LCR, 32h03, 4); write(L
//)]∙])	d_a_character; Send a character dr [31:0] tmp; Re


BFM APB tasks		
<pre>task apb_write; input [31:0] dadr; input [31:0] dadr; input [2:0] size; begin @ (posedge PCLK); PADDR <= #1 dadr; PWRITE <= #1 1'b1; //decoder(addr); PWDATA <= #1 data; PSTRB <= #1 get_pstrob(addr,size); @ (posedge PCLK); while (get_pready(addr)==1'b0) @ (posedge PCLK); 'ifindet LOW_POWER PADDR <= #1 32'h0; PWDATA <= #1 1'b0; PWDATA <= #1 1'b0; PWDATA <= #1 1'b0; PENABLE <= #1 1'b0; reindf PSLL <= #1 1'b0; if (get_pstverr(addr)==1'b1) \$display(\$time,,"%m PSLVERR"); endtask //</pre>	<pre>//</pre>	
Copyright © 2013-2017 by Ando Ki UART	verification (33)	






//bench/verilog/top.v //bench/verilog/tty.v		
incdir+//bench/verilog //bench/verilog/top.v		
`ifndef_SIM_DEFINE_V_ sim_define.v `define_SIM_DEFNE_V_		
//		
define CLK_FREQ 50000000 `define MEM_DELAY 0		
'endif		

lss	sues, project and quiz	
How to use interrupt		
How to implement parity in T	TTY model	
Copyright © 2013-2017 by Ando Ki	UART verification (41)	

