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How to integrate various components
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How to integrate various components

2 What to be considered
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= Need something special, which is called

+ How to support different access patterns

e.g., processing core accesses instructions
and data

e.g., DMA moves a bunch of data as fast as
possible

e.g., video-out controller reads image
frames 30~60 times a second

e.g., video-in controller writes image frames
15~60 times a second

e.g., audio controller reads/writes PWM
data stream

+ How to guarantee error-free data
movement

+ How to provide fast response time and
sufficient bandwidth

+ Most of all, all components should be
accessed via processor

bus, OCB (on-chip-bus), network, OCN
(on-chip-network), switch, ...
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What is bus

& Bus means a set of common lines that electrically connects various blocks in
order to transfer data among them.
(A= oY 550 4E HlolHE AFs7] 98l ol5 EFES AV|Hez A4
g AlEAd)
< Protocol (communication protocol) is a set of rules to accomplish data transfer
among blocks along the bus.
(ZEEZ(EATN2 W AE Fdl volHE dFsty] 13 11 3)

=

Processor

I

\ BUS |
Memory Peripheral Peripheral
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How to send and receive data

Module A

How does Module-B know the data is valid?

i

o1 YO R
Module A [vaig Module B
Valid / \

How does Module-A know Module-B got the data?

F

S

How does Module-B know the data is stable enough to get?

Module A Valid Module B
Ack Note that data ‘D[...]’ consists of multiple lines and there is
skew among signals.
D[0] expecting timing
D[1] fast arriving
. R— ab ¢ d
D[2] late arriving
DL.] |
D[3] fast/late arriving — . i i .
4 — valid | Skew is the time difference among propagation
D[4] fastest arriving L ET— k
vl delays of any outputs of the same device.
D[5] latest arriving i . )
" Valid window will be very narrow.
vali

«—> valid window
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How to send and receive data
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Cclk e | LT
Dp- oL XXX
Module A~ fValid Module B vaid i/
Status[-+- S[+] XXXX
:j\ Ack L
cik el LT L LU
E o1 XD
Module A~ fValid > Module B vaid /N
| Stas[--] [+ XXXXEXXXX
lﬂl Ack o /7 L
le—wait—>!
Cclk e L LT L L1
P o B o o XRGTR
Module A [¥alid s Modue B Valid 7/7
Status| S[+] Sx XXXX
Ack Ack L
le—wait—>!

What if Module B cannot respond at the given time?

How to use the bus more effectively while waiting the ack?

A series of transfers consisting of related or unrelated
can help utilization efficiency of the bus.
How to manage those transfers?
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How to send and receive data

Copyright © 2013-2017 by Ando Ki

*‘i‘k: S O I O A
BL- o110 ox X0y X0z ) ow XXX
wowen [l oges | vaid | /X eXoverspal \_|
., S[.1 S[+] Sx; Sy; sz )(E
i
*‘f:: e LT LMLy
o LS EN
Module A Valid Module B valid L/
| S[+] Sx0 X sx1 X sx2
= I\
ck ok || ML
B | emeee
Module A {valid > Module B Va"dif x x
\ SL. st ENENED
ack ack XX \
—wait b—»
«—wait c——»

Increase utilization by overlapping

Increase utilization by burst operation

Increase utilization using multiple outstanding and/
or out-of-order completion
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How to select one of many slaves

& Decoder (or selector) & Location of decoder
+ Select one by decoding address + Centralized
+ Distributed

Processor
address II
BUS |
decoder Memory Peripheral Peripheral
= ]
z -
o
o
<] A X
S X==Y selected
© Y
: (
g -.\My address Processor
\ BUS |
8 LI L3 JL Il
& c decoder ‘ decoder ‘ decoder ‘
Uugr Memory Peripheral Peripheral
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How to select one of many masters

&= Need selection/election before using & Arbitration
bus, since bus is shared resource + Defines which module gains access
to the bus
& Location of arbiter
+ Centralized

+ Distributed
Processor Processor Ng&fr arbiter Processar Processar Master
( ) arbiter aiter | | (OMA)] arbiter

[ — ‘ﬁ e | | —
| 1T 1T 1T | 17 17 17

. M Peripheral Peripheral
Memory Peripheral Peripheral emory efiphera! efipherd!
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Bus arbitration

— “-\

Q Bus arbnralmn
—

B T \\“\\\
_— / ;“' \ T

— -~
Organization Allocation policy Release policy Handling requests ~ Handling grants
k Centralized Fixed-priority f— Nonpreemptive Shared Daisy-chained
Distributed Rotating-priority Transaction-based Independent Independent
Fair Demand-based Hybrid Hybrid

Hybrid — Preemptive

S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Copyright © 2013-2017 by Ando Ki Bus and Protocol (11)

Algorithms and issues of arbitration

& Algorithm of arbitration & Issues of arbitration
+ Fixed priority based + Fairness
+ Round-robin + Starvation

a situation where a block is unable to gain
bus access without any progress (£ 7] 7+
o7l A glo] 7|t 49)
+ Live-lock

a situation where a block is unable to make
progress although doing something busily
( A7t Ao A& sl A S gl

— Cachell A 745 invalidation ¥ 7%‘%
...), it will eventually be resolved.

+ Deadlock

a situation where a block wait for some
condition that will not resolved forever.
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Starvation example

L 6 I A O I SN IS N R

(highest priority) REQO

REQL
REQ2

REQ3

(lowest priority) REQ4

GRTO

GRT1
GRT2
GRT3

GRT4

REQA starved
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Fairness example

\

Clk
GRTO
GRT1
GRT2
GRT3
GRT4

(lowest priority) REQ4 //
i
|
t
|

(highest priority) REQD

“«-——

— -Keep out higher priority — — — —»

- —————————————agound-— =~ — — —— —— == — = — % — = — — — — new found- — — — — — —>
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Live-lock example

[

Al [ ] X

I I I I

1T Y

PO accesses A, but incurs cache miss

x[1] X[

I T i T

v PO cache tries (o get data of address A
A P1 cache invalidates the access since it
has modified value.

Al ] Alv] <] x[1]
1 I I I
v T v

P1 cache updates its data to the memory.
A Meanwhile, P2 tries to access A that is
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invalid at that time.

@

Al Al ATV ST
' i \

A : P2 cache gets the data and modifies it
Al AT ] ST

Alw]

Bl T,

PO cache retries to get data of address A.

A P2 cache invalidates the access.
v
Al ] Al ] Alv] <[]
« T Y
A y P2 cache updates its data to the memory.
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Meanwhile, P3 tries to access A that is
invalid at that time.

Dead-lock example

Bus A Bus B
f—N I—A Bus bndgel—k N—N
master 0 I AtoB master 2
E E|

aster 1 Bus hridge A aster 3
master BtoA master
master O tries to master 3 tries to
access slave Y. access Slave X .
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slave X

-

master 0 I, .

A
master 1 \

arbiter

Bus B
—N Bus bridge A
I Ml I

master 2

master 3

[
¢
’

(]
slave X
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Transfer types

& How to use bus more efficiently
<+ Latency minimization
<+ Throughput maximization
+ Speed v.s. bandwidth (= capability)

[HiPi-Bus case] [AMBA AHB case]

NRD: Normal-Read NONSEQ - SEQ

NWR: Normal-Write

RFR: Read-For-Read SINGLE

RFW: Read-For-Write INCR/INCR4/INCR8/INCR16
LCR: Lock-Read WRAP4/WRAP8/WRAP16
LCW: Lock-Write

WRB: Writeback

INV: Invalidation

& How to capture access-intentions

+ It can be used to make bus efficient.

+ DMA uses accesses that move a block of
data
Need to support burst
+ CPU generates two types of accesses
and the tip about types will be used by
cache
instruction access: it never be modified by
the CPU
data access: it may be altered by the CPU
near future
+ CPU with cache needs more types of
transfers

Copyright © 2013-2017 by Ando Ki Bus and Protocol (17)

Burst transfers (1/3)

& Burst transfer in the bus is a means of
data movement consisting of more than
one transfer in order to get a higher
throughput.

<+ Burst length
num of beats in a burst
+ Burst size
num of bytes moved in a single beat
+ Addressing mode
incremental
wrapping
fixed
stride
+ Other issues

partial burst size case, in which burst size is
smaller than data bus width

burst length

burst size

E

addressi
ng mode

Copyright © 2013-2017 by Ando Ki Bus and Protocol (18)




Burst transfers (2/3)

& burst (locked)
<+ Address and data are locked together
+ Single pipeline stage
+ If one slave is very slow, all data is held

E one address for burst
+ One Address for entire burst

up.
Burst (locked) One address for a burst
address | A11 ‘ Al12 ‘ A13 ‘ Al4 ‘ A21 ‘ A22 ‘ A23 ‘ address | A1l ‘ ‘AZl ‘ ‘

data‘ D11 ‘ D12 ‘ D13 ‘ D14 ‘ D21 ‘ D22 ‘ D23 ‘

data‘ D11 ‘ D12 ‘ D13 ‘ D14 ‘ D21 ‘ D22 ‘ D23 ‘

Burst (slow slave)

address ‘ All ‘ Al12 ‘ Al13 ‘ Al4 ‘ A21 ‘ A22 ‘ A23 ‘

data D11 D12

Copyright © 2013-2017 by Ando Ki Bus and Protocol (19)

Burst transfers (3/3)

= multiple outstanding bursts
<+ One Address for entire burst
<+ Allows multiple outstanding addresses

Multiple outstanding bursts

All ‘ A21

address ‘ A31 ‘ ‘

data‘ D11 ‘ D12 ‘ D13 ‘ D14 ‘ D21 ‘ D22 ‘ D23 ‘

& out-of-order completion
+ Masters can issue multiple ordered

addresses
+ Fast slaves may return data ahead of
slow slaves
address ‘ ALL ‘ A21 ‘ ‘ A31 ‘ ‘

data‘ D21 ‘ D22 ‘ D23 ‘ D11 ‘ D12 ‘ D13 ‘ 014‘

& data interleaving
+ Returned data can be interleaved

Data interleaving

address | ALL ‘ A21 ‘ ‘ A31 ‘ ‘

data‘ D21 ‘ D22 ‘ D11 ‘ D23 ‘ D12 ‘ D13 ‘ D14 ‘
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Pipelined and split transfers

& Pipeline bus protocol
< arbitration, address, data phases can be

& Split bus protocol
<+ Split transfers improve the overall

overlapped utilization of the bus by separating the
operation of the master providing the
address to a slave from the operation of
the salve responding with the appropriate
data.
address‘ ALl ‘ A21 ‘ A31 | A4l ‘ address ‘ A1l ‘ A21 ‘ ‘ASI ‘ ‘ 411‘ ‘
data ‘ D11 ‘ D21 | D22 ‘ data ‘ ‘ D21 ‘ ‘ D11 ‘

Overlapping address and data
results in pipelining.

Copyright © 2013-2017 by Ando Ki

Split address and data by retrying.
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Data ordering (1/2)

&= Bit ordering within a byte

———byte @bi——

0123 45¢67 identification
43210 numbering
———byte (B-bi———

IR

Isb msb ) magnitude
msb Isb weighting

Copyright © 2013-2017 by Ando Ki

& Byte ordering of a multiple-of-byte

UXAI:' Big-endian

o

°

o MSB LsB
ox7 z w I X I Y I z |
ox6 Y
ox5 X read 4- L MSB LsB
owt | NI M DLz | v [ x [w ]

0x3 0x4

Little-endian

Memory in byte-wise

Bus and Protocol (22)




& Bit ordering within a byte

+ Usually most significant bit is called 7t bit,

but not always true.

& Byte ordering

<+ How should bytes within multi-byte word

be ordered in memory?

Data ordering (2/2)

——byte (8-bity———

7 6 5 4 3 210

———byte (B-bi——_

+ Big-endian: Least significant byte has

highest address

Most significant byte has lowest address
Sun SPARC, HP, Macs, PowerPC, MIPS,

DLX, IBM370, OpenRISC

best to handle left-to-right text.

31

32-bitregister [ | | | |

+ Little-endian: Least significant byte has

lowest address

Intel Pentium, DEC Alpha, ARM, VAX, PDP-

11, Core-A

best to handle position-dependent data

such as number.

Refer to: ‘On holy wars and a plea for peace’ by D. Cohen, IEEE Computer Vol.14,

No.10, Oct. 1981, p.48-54.
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Y . )
msp-— little-endian _,

big-endian __,

o = N W

Justified or non-justified

= Justified bus

+ Byte always travels on rightmost or

leftmost quarter of bus

size determines the lanes that data actually

use.
+ Wishbone bus

= Non-justified bus / unjustified bus
+ Bus lanes are extension of memory bank

lane.

address determines the lanes that data

actually use.

r More complex cases with endianness.

+ AMBA bus

+ E.g., how to interface 32-bit memory with

64 or 128-bit AXI bus?

Copyright © 2013-2017 by Ando Ki

D[31:24]
D[23:16]
D[15:8]
D[7:0] T T T
4-byte block 2-byte block 1-byte block
D[31:24]
D[23:16]
D[15:8]
D[7:0] T T T
Wrapper Wrapper
4-byte block [ ] \
2-byte block 1-byte block
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Partial/narrow access

= For example
<+ How to read/write two-byte through 32-bit
data bus?
For read, read full width and ignore some.

For write, need something to indicate which
bytes are important

DATA[BLO|| D[3124] | D[2316] | D5l | D70 |
¥ > E—

sesal (TIT1T]

DATA[31: 0]‘ D[31:24]

] \ D[23:16]
- >

BE[3:0]

DATA[BLO|| D[3124] | D[23:16] | D58l | D70 |
-

SIZE[L:0][ 2B |-r!
ADDRI[L o] ,,,,,,,,,,,,,,,,,,,

Copyright © 2013-2017 by Ando Ki

® Partial access is used to read/write a
fewer number of bytes than the data bus
width.

+ Byte enable

Enable signals are given to indicate which
byte are active.

DATA[31:0] with BE[3:0]

+ Size and address

Size and a lower bits of address determines
active bytes.

DATA[31:0] with SIZE[1:0] and ADDR[1:0]

Bus and Protocol (25)

Alignment of access

&= Are there any rule between address and
size of access

+ two-byte access should be with address
with a multiple of 2.
E.g,0,2,4,6, ...
+ four-byte access should be with address
with a multiple of 4.
E.g. 0, 4,8, 16, ...
+ How about three-byte case

Usually most processor does not generate
this kind of access

So, most bus systems does not support this,
but there are exceptions.

Copyright © 2013-2017 by Ando Ki

2 How about burst accesses with bus
wider than 4-bytes data lane?

+ E.g., 64-bit wide (8-byte data lane) or
128-bit wide

+ Is it possible to make all access be data-
width aligned?

No, then what happens. Or how to deal with
it.

Let see this for AXI case.

Bus and Protocol (26)




Atomic & mutual exclusion

Bank B
(Branch)

A enters critical region Aloaves critical region

ProcesshA ————————————————}—

dify

|

1
Batemptsto | Benters

1

1 ! 1
d-maodiy d t | | '
' ' i B leaves
i critical
[BankBread H ok  {Bank Bwrite] [ ATMread ATM ATMwrite | y e ;’o"r““' critical region | critical region
calculate calculate | ' / 1 |
| [ y
Process B T : | 1
e
[ Bank B read Bank B Bank B wmte] 1 I . - 1 1
' ' blocke ' '
calculate T, T T T,

ATM
[ read ATM ATMwrite -
calculate
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Atomic operations (1/2)

&= Application requires mutual exclusion in
order to protect critical section.

+ What kind of relations with system bus?

QO
process process process " 'g 5
(task) (task) / 00O \_ (task) o =21
° @ o !
. O |
88 |
sas |
[
Operating Systems
=F =F =
System wide shared resources
Copyright © 2013-2017 by Ando Ki Bus and Protocol (28)




Atomic operations (2/2)

£ Microprocessors have special application machine instruction bus operation
instructions for atomic access in order to .
. lock(M) loop: \
support mutual exclusion. T
+ ARM: SWAP L E
LDREX (load exclusive), STREX (store | critical o | locked_write M, 1
exclusive) N s
N can access M
+ MC680X0: CAS (Compare And Swap) o) s
+ Intel: lock inc, lock dec, lock xchg, lock p
! ! ! unlock(M) — fe-mmmmmmmmmmeeee __wme M, 0
add, lock sub ;

+ Sparc: cas, ldstub
+ MIPS: Il (load linked), sc (store conditional) cmL
+ DEC Alpha: Id_l, stl_c

L L L L L L
+ PowerPC: lwarx, stwcx A1 000
—

-

+ Core-A: EXCHG AS
D[]
DS
LOCK
T None Can Access Bus--—------ ~
locked-read locked-write
Copyright © 2013-2017 by Ando Ki Bus and Protocol (29)

Atomic operations

&= ‘swap(X, 1); consists of

<+ locked-read X
It gets current value of X

+ locked-write 1 to X
It updates X by 1 regardless its current
value

+ locked-read and locked-write are

Program A Program B Program C protected by bus as read-modify-write

while (swap(X, 1)); | | while (swap(X, 1)); | |while (swap(X, 1)); | & Only one can enter the critical section at
... Il critical section ... I/ critical section ... I/ critical section A R
a given time and any other cannot enter

X =0; /I unlock X =0; /I unlock X =0; // unlock the region until the first one unlock it.

Copyright © 2013-2017 by Ando Ki Bus and Protocol (30)
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Memory protection

Physical Memory

Physical Memory

Privileged
Mode
Virtual Physical
Privileged 0s
Address Address
Mode Code + Data os
1 l Code + Data
0s
Memory
Anplicati Code + Data
lication Ci Unit
Code + Data oo
Application Code,
Application
Code + Data

Application Code

Memory Management Unit (MMU)

« Controls accesses to and from external memory

« Assigns access permissions to memory regions

« Performs virtual to physical address translation
Bus and Protocol (31)
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Synchronous and asynchronous

& asynchronous & How about this

<+ No common clock + Is it synchronous or asynchronous?

+ E.g., HADDRY...] to HREADY
Rea_ /TN

I
Ack | i
& synchronous 1 —
It can be
<+ common clock

varied

+ use pre-defined timing point in terms of
clock-edge or # of clock-cycles to carry

& Clock-domain crossing: asynchronous
out bus operation

_a’ domai Clk_b’ domail
synchronous) J W (synchronous)

clk_a

Bus and Protocol (32)




Clock frequency and phase

Reference _,_l |_| |_| |_| |_| |_|

Synchronous — same frequency, same phase

a1 I M Il Il M

Asynchronous —out of frequency, out of phase

Isochronous - same frequenlt_:ly, out of phase

Copyright © 2013-2017 by Ando Ki Bus and Protocol (33)

Synchronous or not

125Mhz :
synchronous
signals

125Mhz

Wgﬂllf
asynchronous

100Mhz ignals

W;ll]lf
Logic 0

125Mhz
ngl]l Whenever the input signal D does not meet the Tsu

o I, (Setup) and Th (Hold) of the given D flip-flop,
ngl]l i metastability occurs.
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CDC and Multi-flip-flop synchronization

CDC: clock domain crossing dat

sig_a )
> sig_b oea [ L LT L]

sig_a /
ao [ | |

sig_b/0

sig_b/1 - \

'sig_b' can be settle down to '0’ or '1' depending on situation (fan-out, temperature, ...).

sig_a sig_b sig_b_sync
dat — D Q—»g_ D Q 9- D Q 955y

clk_a —
clk_b T T

multi-flip-flop synchronization dat

clk_a

sig_a

kb [ ] \ \ \

sig_b

sig_b_synch

value may not be in stable
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CDC problems

= Data can be lost with fast-to-slow clock

domain
& Solutions sig_a '
+ Edge detection dat — D Q —»|D Q —sig_b
+ Feedback or handshake clk a 7—‘,
clk_b
fast clock
ok 2 L UL
data in
(sig_a)
slow clock ‘ ‘ ‘ ‘ ‘ ‘
(clk_b)
data out
(sig_ba)
data lost
Copyright © 2013-2017 by Ando Ki Bus and Protocol (36)




CDC problems

& Parallel data can be inconsistency due to

meta-stability

= Solutions

<+ Synchronization and ignore some
intermediate cycles

+ MUX synchronization

+ Use single-bit changing code, such an

grey code

But not applicable for all applications

Copyright © 2013-2017 by Ando Ki

sig_a[0]
dat[0] D Q D Q — sig_b[0]
clk_a —
sig_a[1]
dat[1] D Q » D Q [— sig_b[1]
L *~—
clk_b
dat{1]
dat[0]
sigat]
sig_a[0]
wo_ [ | |
sig_b[1]
sig_b[o]i

\ data inconsistency ,

Bus and Protocol (37)

Timing diagram

&= Functional Timing Diagram
+ assumes zero delays
<+ simply demonstrates logic relations

Copyright © 2013-2017 by Ando Ki

& Timing Diagram with delay
<+ tpHL: High-to-Low propagation delay
+ tpLH: Low-to-High propagation delay

O w>
=2

Bus and Protocol (38)




Timing diagram convention

Ideal signals have 0 rise and fall times

0
Figure 5.5 Ideal logic level

Normal signal representation: single and multi-bit

2NV

Figure 5.7 Single-signal waveform

;] [ I

Figure 5.8 Multiple-signal waveform

Copyright © 2013-2017 by Ando Ki

A real signal has nonzero rise and fall times

Figure 5.6 Real signal

Unknown signals (when they are changing) representation

unknown \

(a) Single signal

(b) multiple signals

Figure 5.9 Unknown signals

Bus and Protocol (39)

Timing diagram convention

Floating signal

Signal
(a) Single signal

Signals

/ floating S

(b) multiple signals

Figure 5.10 Floating signals

Copyright © 2013-2017 by Ando Ki

Unknown or changing signals

IR\ S/

valid  Transition valid  Transition
high Low low high Valid high
Floating
Not ‘;C(",‘;e Changin or
Driven al Undefined
Tristae bl Dat:
- ata
FighZ Data

Bus and Protocol (40)
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Signal causal relationships

. Cause

I3

signal A

signal B V... Result

(a) single cause and single result

Cause
Signal A t{ :

signal B

"Results
Signal C

(c) single cause and multiple results

Copyright © 2013-2017 by Ando Ki

. Causes

Signal A
Signal B

Signal C . Result

Signal D

(b) multiple causes and single result

..--Causes

Signal A
Signal B

Signal C 2 Results

Signal D

(d) multiple causes and multiple results

Bus and Protocol (41)

Timing diagram example

&= Latch
+ When en = 1, latch is transparent
D flows through to Q like a buffer
+ When en = 0, the latch is opaque

Q holds its old value independent of D
+ a.k.a. transparent latch or level-sensitive

latch
d—D Q}—q
en—G

Copyright © 2013-2017 by Ando Ki

= Flip-flop
+ When CLK rises, D is copied to Q
<+ At all other times, Q holds its value

+ a.k.a. positive edge-triggered flip-flop,
master-slave flip-flop

a—D Q—q
clk —

Bus and Protocol (42)
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Timing diagram example

B An example of simple memory

clk
din[...] —»] ——> dout..]
add[..] —»| en
en —>»  memory
we —»| we
o add..] A0 AL
dinf...] DO
dout[...] DO D1
write cycle read cycle
ok \ \ \ \
L /A N
we /N
addl..] A0 AL
din[...] DO
dout]...] DO : D1 :><><
write cycle read cycle
Copyright © 2013-2017 by Ando Ki Bus and Protocol (43)
Timing diagram example
= An example of AMBA APB read/write &= Read case o . . .

timing diagram with bus timing notation.

Bus fo high impedance

Bus change

PCLK

High impedance to stable bus PADDR

XX Addr 1

PADDR i Addr 1
PWRITE 0
Clock 1 SR | |
HIGH to LOW o pENABLE /N
Transient V PRDATA f ) Data v JY
HIGH/LOW to HIGH T
Bus stable = Write case
T T2 T3 T

PWRITE —ﬂ

PSEL ﬂ
PENABLE J\—

PWDATA

Copyright © 2013-2017 by Ando Ki Bus and Protocol (44)
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Timing diagram example

2 AMBA AHB four-beat wrapping t ! b " " b ¢
case Hewk L L

HADDR][31:0] :)C( 0x38 >O< laxac X}( 0230 )O( 0x34

g
wrranspiol )Rl e 0= IO =

XX

XX

XX

C

0

HBURSTIZ:0]  |)) WRAP4 i
HWRITE __|

wseeza Y i X

wwoatazto) )Y X (o) i =3 0% m L

HREADY  |\/ W |/ V \Y V W

HrRoATAB1:0] | Y X o = = e
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Trends of interconnect
High performance system tends to adopt point-to-point switched interconnects.

2" Generation Point-to-Point
—  Packet switched
— PHY: SERDES differential
— Lowest pin count
1%t Generation Point-to-Point
— Packet switched
—  PHY: Source-sync differential

—  Lower pin count 2 10 GHz
Example: HT/P-RIO < Example: PCI Ex/
S-RIO
Hierarchical Bus ’
— Bridged Hierarchy r
- Broadcast DEUTEE
— PHY: Single-ended Bridge! Device! Devicel
Example: PCI/ PCI-X < 133MHz ¢°e
&%
‘ ot
Shared Bus Q{‘
- Single segment Device | | Device| Device| Device| |Device R
: E;’T\a(gg?r?;le—ended \Devicel\Device”Device”Device”DeviceI
- Highest pin count Example: VME < 66MHz
P-RIO: Parallel RapidlO
S-RIO: Serial RapidlO
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Trends of interconnect

Serial /O / > 1GHz

Clock D covery | Device |
Point-to-Point vt vt

e Switch Fabric

Parallel VO vt ot
Source Synchronous <1GHz
Point-to-Point Device Device Infiniband, 3GIO...
S—— vt vt PCle, SRIO

Switch Fabric

Parallel VO * ﬂ #ﬂh
Shared Clock < 133MHz Device Device
Devi Devi
Shared Bus B | S RapidIO, POS PHY LA4...
Device Bridge Device Device
e | —

: < 33MHz : PCI64/66, PCI-X 133...
Device Device Device Device
e | | | S |

@
o
=
E
(]
)=
[
o
=
2
7]
>
(%]

[ e E—
Device Device Device Device ISA, PCI32/33...
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Serial standards

8B/10B
ENDEC

3Gio™ 2.5 Gbps Yes
Serial ATA™ 1.5 Gbps Yes
InfiniBand™ 2.5 Gbps Yes

Standards Line Speed

Gb Ethernet 1.25 Gbps Yes
10Gb Ethernet (XAUI) 3.125Gbps  Yes
Serial RapidiO™ 1.25 Gbps Yes
Xilinx 40G Backplane 3.125Gpbs Yes

Serial I/O

Eliminates
traditional
noise & clock
skew issues

Differential /0 3.125 Gbps and up!

(e.g. LVDS)

Clock Skew Limited
above ~1.0 Gbps
(Double Data Rate)

Traditional 1/0
Noise Limited schemes have
above ~200 Mbps limited Bandwidth
(Single Data Rate)

Single Ended /O
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