Bus and Protocol

2013 - 2017

Ando Ki, Ph.D.
(adki@future-ds.com)

Agenda

& What is BUS

& How to send and receive data
= How to select slave

= How to select master

= Transfer types

= Burst transfers

& Pipelined and split transfers
= Data ordering

= Justified or non-justified

= Partial/narrow access

&= Alignment

= Atomic

& Clock frequency and phase

& Synchronous or asynchronous
& Timing diagram conventions

Copyright © 2013-2017 by Ando Ki Bus and Protocol (2)

How to integrate various components

FLASH SRAM DRAM
Processing FLASH SRAM DRAM Touch panel |t N
core controller controller controller controller |v
Interrupt L Lcowith
Cache MMU FPU et Tick timer LCD controller (— =) LCDwih
DVIHDMIDP
Switches and L\ DMA HDMI LN
et —)| cpo comtreler SPI controler 12C controller conotler fr——| Graphical
monitor
Ethernet
Piscil USB controller controller o Samere.
(MAC)
Various USB PHY Ethermot PHY Mic and Camera
sensors speaker module

Copyright © 2013-2017 by Ando Ki

Bus and Protocol (3)

How to integrate various components

2 What to be considered

Copyright © 2013-2017 by Ando Ki

FLASH SRAM DRAM
Processing FLASH SRAM DRAM Toueh panel L\
controller controller contoller controller J J
ache Iterupt ick timer controller(——f | LCOwith
Cache MMU FPU controller Tiek LeD controller \—— touchscreen
DVIHOMIDP
Switches and L HOMI
i =) cpo commler SPIcontroler | | 12C controller conroler o) Grapheal
Etheret
Audio
uss controller| | controller
controler gy contoller controler
Various f— Ethemet PHY Mic and Camera
sensors. speaker module

= Need something special, which is called

+ How to support different access patterns

e.g., processing core accesses instructions
and data

e.g., DMA moves a bunch of data as fast as
possible

e.g., video-out controller reads image
frames 30~60 times a second

e.g., video-in controller writes image frames
15~60 times a second

e.g., audio controller reads/writes PWM
data stream

+ How to guarantee error-free data
movement

+ How to provide fast response time and
sufficient bandwidth

+ Most of all, all components should be
accessed via processor

bus, OCB (on-chip-bus), network, OCN
(on-chip-network), switch, ...

Bus and Protocol (4)

What is bus

& Bus means a set of common lines that electrically connects various blocks in
order to transfer data among them.
(A= oY 550 4E HlolHE AFs7] 98l ol5 EFES AV|Hez A4
g AlEAd)
< Protocol (communication protocol) is a set of rules to accomplish data transfer
among blocks along the bus.
(ZEEZ(EATN2 W AE Fdl volHE dFsty] 13 11 3)

=

Processor

I

\ BUS |
Memory Peripheral Peripheral
Copyright © 2013-2017 by Ando Ki Bus and Protocol (5)

How to send and receive data

Module A

How does Module-B know the data is valid?

i

o1 YO R
Module A [vaig Module B
Valid / \

How does Module-A know Module-B got the data?

F

S

How does Module-B know the data is stable enough to get?

Module A Valid Module B
Ack Note that data ‘D[...]’ consists of multiple lines and there is
skew among signals.
D[0] expecting timing
D[1] fast arriving
. R— ab ¢ d
D[2] late arriving
DL.] |
D[3] fast/late arriving — . i i .
4 — valid | Skew is the time difference among propagation
D[4] fastest arriving L ET— k
vl delays of any outputs of the same device.
D[5] latest arriving i .)
" Valid window will be very narrow.
vali

«—> valid window

Copyright © 2013-2017 by Ando Ki Bus and Protocol (6)

How to send and receive data

Copyright © 2013-2017 by Ando Ki

Cclk e | LT
Dp- oL XXX
Module A~ fValid Module B vaid i/
Status[-+- S[+] XXXX
:j\ Ack L
cik el LT L LU
E o1 XD
Module A~ fValid > Module B vaid /N
| Stas[--] [+ XXXXEXXXX
lﬂl Ack o /7 L
le—wait—>!
Cclk e L LT L L1
P o B o o XRGTR
Module A [¥alid s Modue B Valid 7/7
Status| S[+] Sx XXXX
Ack Ack L
le—wait—>!

What if Module B cannot respond at the given time?

How to use the bus more effectively while waiting the ack?

A series of transfers consisting of related or unrelated
can help utilization efficiency of the bus.
How to manage those transfers?

Bus and Protocol (7)

How to send and receive data

Copyright © 2013-2017 by Ando Ki

*‘i‘k: S O I O A
BL- o110 ox X0y X0z) ow XXX
wowen [l oges | vaid | /X eXoverspal _|
., S[.1 S[+] Sx; Sy; sz)(E
i
*‘f:: e LT LMLy
o LS EN
Module A Valid Module B valid L/
| S[+] Sx0 X sx1 X sx2
= I\
ck ok || ML
B | emeee
Module A {valid > Module B Va"dif x x
\ SL. st ENENED
ack ack XX \
—wait b—»
«—wait c——»

Increase utilization by overlapping

Increase utilization by burst operation

Increase utilization using multiple outstanding and/
or out-of-order completion

Bus and Protocol (8)

How to select one of many slaves

& Decoder (or selector) & Location of decoder
+ Select one by decoding address + Centralized
+ Distributed

Processor
address II
BUS |
decoder Memory Peripheral Peripheral
=]
z -
o
o
<] A X
S X==Y selected
© Y
: (
g -.\My address Processor
\ BUS |
8 LI L3 JL Il
& c decoder ‘ decoder ‘ decoder ‘
Uugr Memory Peripheral Peripheral
Copyright © 2013-2017 by Ando Ki Bus and Protocol (9)

How to select one of many masters

&= Need selection/election before using & Arbitration
bus, since bus is shared resource + Defines which module gains access
to the bus
& Location of arbiter
+ Centralized

+ Distributed
Processor Processor Ng&fr arbiter Processar Processar Master
() arbiter aiter | | (OMA)] arbiter

[— ‘ﬁ e | | —
| 1T 1T 1T | 17 17 17

. M Peripheral Peripheral
Memory Peripheral Peripheral emory efiphera! efipherd!

Copyright © 2013-2017 by Ando Ki Bus and Protocol (10)

Bus arbitration

— “-\

Q Bus arbnralmn
—

B T \\“\\\
_— / ;“' \ T

— -~
Organization Allocation policy Release policy Handling requests ~ Handling grants
k Centralized Fixed-priority f— Nonpreemptive Shared Daisy-chained
Distributed Rotating-priority Transaction-based Independent Independent
Fair Demand-based Hybrid Hybrid

Hybrid — Preemptive

S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Copyright © 2013-2017 by Ando Ki Bus and Protocol (11)

Algorithms and issues of arbitration

& Algorithm of arbitration & Issues of arbitration
+ Fixed priority based + Fairness
+ Round-robin + Starvation

a situation where a block is unable to gain
bus access without any progress (£ 7] 7+
o7l A glo] 7|t 49)
+ Live-lock

a situation where a block is unable to make
progress although doing something busily
(A7t Ao A& sl A S gl

— Cachell A 745 invalidation ¥ 7%‘%
...), it will eventually be resolved.

+ Deadlock

a situation where a block wait for some
condition that will not resolved forever.

Copyright © 2013-2017 by Ando Ki Bus and Protocol (12)

Starvation example

L 6 I A O I SN IS N R

(highest priority) REQO

REQL
REQ2

REQ3

(lowest priority) REQ4

GRTO

GRT1
GRT2
GRT3

GRT4

REQA starved

Bus and Protocol (13)

Copyright © 2013-2017 by Ando Ki

Fairness example

\

Clk
GRTO
GRT1
GRT2
GRT3
GRT4

(lowest priority) REQ4 //
i
|
t
|

(highest priority) REQD

“«-——

— -Keep out higher priority — — — —»

- —————————————agound-— =~ — — —— —— == — = — % — = — — — — new found- — — — — — —>

Bus and Protocol (14)

Copyright © 2013-2017 by Ando Ki

Live-lock example

[

Al [] X

I I I I

1T Y

PO accesses A, but incurs cache miss

x[1] X[

I T i T

v PO cache tries (o get data of address A
A P1 cache invalidates the access since it
has modified value.

Al] Alv] <] x[1]
1 I I I
v T v

P1 cache updates its data to the memory.
A Meanwhile, P2 tries to access A that is

Copyright © 2013-2017 by Ando Ki

invalid at that time.

@

Al Al ATV ST
' i \

A : P2 cache gets the data and modifies it
Al AT] ST

Alw]

Bl T,

PO cache retries to get data of address A.

A P2 cache invalidates the access.
v
Al] Al] Alv] <[]
« T Y
A y P2 cache updates its data to the memory.

Bus and Protocol (15)

Meanwhile, P3 tries to access A that is
invalid at that time.

Dead-lock example

Bus A Bus B
f—N I—A Bus bndgel—k N—N
master 0 I AtoB master 2
E E|

aster 1 Bus hridge A aster 3
master BtoA master
master O tries to master 3 tries to
access slave Y. access Slave X .

Copyright © 2013-2017 by Ando Ki

slave X

-

master 0 I, .

A
master 1 \

arbiter

Bus B
—N Bus bridge A
I Ml I

master 2

master 3

[
¢
’

(]
slave X

Bus and Protocol (16)

£

Transfer types

& How to use bus more efficiently
<+ Latency minimization
<+ Throughput maximization
+ Speed v.s. bandwidth (= capability)

[HiPi-Bus case] [AMBA AHB case]

NRD: Normal-Read NONSEQ - SEQ

NWR: Normal-Write

RFR: Read-For-Read SINGLE

RFW: Read-For-Write INCR/INCR4/INCR8/INCR16
LCR: Lock-Read WRAP4/WRAP8/WRAP16
LCW: Lock-Write

WRB: Writeback

INV: Invalidation

& How to capture access-intentions

+ It can be used to make bus efficient.

+ DMA uses accesses that move a block of
data
Need to support burst
+ CPU generates two types of accesses
and the tip about types will be used by
cache
instruction access: it never be modified by
the CPU
data access: it may be altered by the CPU
near future
+ CPU with cache needs more types of
transfers

Copyright © 2013-2017 by Ando Ki Bus and Protocol (17)

Burst transfers (1/3)

& Burst transfer in the bus is a means of
data movement consisting of more than
one transfer in order to get a higher
throughput.

<+ Burst length
num of beats in a burst
+ Burst size
num of bytes moved in a single beat
+ Addressing mode
incremental
wrapping
fixed
stride
+ Other issues

partial burst size case, in which burst size is
smaller than data bus width

burst length

burst size

E

addressi
ng mode

Copyright © 2013-2017 by Ando Ki Bus and Protocol (18)

Burst transfers (2/3)

& burst (locked)
<+ Address and data are locked together
+ Single pipeline stage
+ If one slave is very slow, all data is held

E one address for burst
+ One Address for entire burst

up.
Burst (locked) One address for a burst
address | A11 ‘ Al12 ‘ A13 ‘ Al4 ‘ A21 ‘ A22 ‘ A23 ‘ address | A1l ‘ ‘AZl ‘ ‘

data‘ D11 ‘ D12 ‘ D13 ‘ D14 ‘ D21 ‘ D22 ‘ D23 ‘

data‘ D11 ‘ D12 ‘ D13 ‘ D14 ‘ D21 ‘ D22 ‘ D23 ‘

Burst (slow slave)

address ‘ All ‘ Al12 ‘ Al13 ‘ Al4 ‘ A21 ‘ A22 ‘ A23 ‘

data D11 D12

Copyright © 2013-2017 by Ando Ki Bus and Protocol (19)

Burst transfers (3/3)

= multiple outstanding bursts
<+ One Address for entire burst
<+ Allows multiple outstanding addresses

Multiple outstanding bursts

All ‘ A21

address ‘ A31 ‘ ‘

data‘ D11 ‘ D12 ‘ D13 ‘ D14 ‘ D21 ‘ D22 ‘ D23 ‘

& out-of-order completion
+ Masters can issue multiple ordered

addresses
+ Fast slaves may return data ahead of
slow slaves
address ‘ ALL ‘ A21 ‘ ‘ A31 ‘ ‘

data‘ D21 ‘ D22 ‘ D23 ‘ D11 ‘ D12 ‘ D13 ‘ 014‘

& data interleaving
+ Returned data can be interleaved

Data interleaving

address | ALL ‘ A21 ‘ ‘ A31 ‘ ‘

data‘ D21 ‘ D22 ‘ D11 ‘ D23 ‘ D12 ‘ D13 ‘ D14 ‘

Copyright © 2013-2017 by Ando Ki Bus and Protocol (20)

Pipelined and split transfers

& Pipeline bus protocol
< arbitration, address, data phases can be

& Split bus protocol
<+ Split transfers improve the overall

overlapped utilization of the bus by separating the
operation of the master providing the
address to a slave from the operation of
the salve responding with the appropriate
data.
address‘ ALl ‘ A21 ‘ A31 | A4l ‘ address ‘ A1l ‘ A21 ‘ ‘ASI ‘ ‘ 411‘ ‘
data ‘ D11 ‘ D21 | D22 ‘ data ‘ ‘ D21 ‘ ‘ D11 ‘

Overlapping address and data
results in pipelining.

Copyright © 2013-2017 by Ando Ki

Split address and data by retrying.

Bus and Protocol (21)

Data ordering (1/2)

&= Bit ordering within a byte

———byte @bi——

0123 45¢67 identification
43210 numbering
———byte (B-bi———

IR

Isb msb) magnitude
msb Isb weighting

Copyright © 2013-2017 by Ando Ki

& Byte ordering of a multiple-of-byte

UXAI:' Big-endian

o

°

o MSB LsB
ox7 z w I X I Y I z |
ox6 Y
ox5 X read 4- L MSB LsB
owt | NI M DLz | v [x [w]

0x3 0x4

Little-endian

Memory in byte-wise

Bus and Protocol (22)

& Bit ordering within a byte

+ Usually most significant bit is called 7t bit,

but not always true.

& Byte ordering

<+ How should bytes within multi-byte word

be ordered in memory?

Data ordering (2/2)

——byte (8-bity———

7 6 5 4 3 210

———byte (B-bi——_

+ Big-endian: Least significant byte has

highest address

Most significant byte has lowest address
Sun SPARC, HP, Macs, PowerPC, MIPS,

DLX, IBM370, OpenRISC

best to handle left-to-right text.

31

32-bitregister [| | | |

+ Little-endian: Least significant byte has

lowest address

Intel Pentium, DEC Alpha, ARM, VAX, PDP-

11, Core-A

best to handle position-dependent data

such as number.

Refer to: ‘On holy wars and a plea for peace’ by D. Cohen, IEEE Computer Vol.14,

No.10, Oct. 1981, p.48-54.

Copyright © 2013-2017 by Ando Ki

Bus and Protocol (23)

Y .)
msp-— little-endian _,

big-endian __,

o = N W

Justified or non-justified

= Justified bus

+ Byte always travels on rightmost or

leftmost quarter of bus

size determines the lanes that data actually

use.
+ Wishbone bus

= Non-justified bus / unjustified bus
+ Bus lanes are extension of memory bank

lane.

address determines the lanes that data

actually use.

r More complex cases with endianness.

+ AMBA bus

+ E.g., how to interface 32-bit memory with

64 or 128-bit AXI bus?

Copyright © 2013-2017 by Ando Ki

D[31:24]
D[23:16]
D[15:8]
D[7:0] T T T
4-byte block 2-byte block 1-byte block
D[31:24]
D[23:16]
D[15:8]
D[7:0] T T T
Wrapper Wrapper
4-byte block [] \
2-byte block 1-byte block

Bus and Protocol (24)

Partial/narrow access

= For example
<+ How to read/write two-byte through 32-bit
data bus?
For read, read full width and ignore some.

For write, need something to indicate which
bytes are important

DATA[BLO|| D[3124] | D[2316] | D5l | D70 |
¥ > E—

sesal (TIT1T]

DATA[31: 0]‘ D[31:24]

] \ D[23:16]
- >

BE[3:0]

DATA[BLO|| D[3124] | D[23:16] | D58l | D70 |
-

SIZE[L:0][2B |-r!
ADDRI[L o] ,,,,,,,,,,,,,,,,,,,

Copyright © 2013-2017 by Ando Ki

® Partial access is used to read/write a
fewer number of bytes than the data bus
width.

+ Byte enable

Enable signals are given to indicate which
byte are active.

DATA[31:0] with BE[3:0]

+ Size and address

Size and a lower bits of address determines
active bytes.

DATA[31:0] with SIZE[1:0] and ADDR[1:0]

Bus and Protocol (25)

Alignment of access

&= Are there any rule between address and
size of access

+ two-byte access should be with address
with a multiple of 2.
E.g,0,2,4,6, ...
+ four-byte access should be with address
with a multiple of 4.
E.g. 0, 4,8, 16, ...
+ How about three-byte case

Usually most processor does not generate
this kind of access

So, most bus systems does not support this,
but there are exceptions.

Copyright © 2013-2017 by Ando Ki

2 How about burst accesses with bus
wider than 4-bytes data lane?

+ E.g., 64-bit wide (8-byte data lane) or
128-bit wide

+ Is it possible to make all access be data-
width aligned?

No, then what happens. Or how to deal with
it.

Let see this for AXI case.

Bus and Protocol (26)

Atomic & mutual exclusion

Bank B
(Branch)

A enters critical region Aloaves critical region

ProcesshA ————————————————}—

dify

|

1
Batemptsto | Benters

1

1 ! 1
d-maodiy d t | | '
' ' i B leaves
i critical
[BankBread H ok {Bank Bwrite] [ATMread ATM ATMwrite | y e ;’o"r““' critical region | critical region
calculate calculate | ' / 1 |
| [y
Process B T : | 1
e
[Bank B read Bank B Bank B wmte] 1 I . - 1 1
' ' blocke ' '
calculate T, T T T,

ATM
[read ATM ATMwrite -
calculate

Copyright © 2013-2017 by Ando Ki Bus and Protocol (27)

Atomic operations (1/2)

&= Application requires mutual exclusion in
order to protect critical section.

+ What kind of relations with system bus?

QO
process process process " 'g 5
(task) (task) / 00O _ (task) o =21
° @ o !
. O |
88 |
sas |
[
Operating Systems
=F =F =
System wide shared resources
Copyright © 2013-2017 by Ando Ki Bus and Protocol (28)

Atomic operations (2/2)

£ Microprocessors have special application machine instruction bus operation
instructions for atomic access in order to .
. lock(M) loop: \
support mutual exclusion. T
+ ARM: SWAP L E
LDREX (load exclusive), STREX (store | critical o | locked_write M, 1
exclusive) N s
N can access M
+ MC680X0: CAS (Compare And Swap) o) s
+ Intel: lock inc, lock dec, lock xchg, lock p
! ! ! unlock(M) — fe-mmmmmmmmmmeeee __wme M, 0
add, lock sub ;

+ Sparc: cas, ldstub
+ MIPS: Il (load linked), sc (store conditional) cmL
+ DEC Alpha: Id_l, stl_c

L L L L L L
+ PowerPC: lwarx, stwcx A1 000
—

-

+ Core-A: EXCHG AS
D[]
DS
LOCK
T None Can Access Bus--—------ ~
locked-read locked-write
Copyright © 2013-2017 by Ando Ki Bus and Protocol (29)

Atomic operations

&= ‘swap(X, 1); consists of

<+ locked-read X
It gets current value of X

+ locked-write 1 to X
It updates X by 1 regardless its current
value

+ locked-read and locked-write are

Program A Program B Program C protected by bus as read-modify-write

while (swap(X, 1)); | | while (swap(X, 1)); | |while (swap(X, 1)); | & Only one can enter the critical section at
... Il critical section ... I/ critical section ... I/ critical section A R
a given time and any other cannot enter

X =0; /I unlock X =0; /I unlock X =0; // unlock the region until the first one unlock it.

Copyright © 2013-2017 by Ando Ki Bus and Protocol (30)

Copyright © 2013-2017 by Ando Ki

Memory protection

Physical Memory

Physical Memory

Privileged
Mode
Virtual Physical
Privileged 0s
Address Address
Mode Code + Data os
1 l Code + Data
0s
Memory
Anplicati Code + Data
lication Ci Unit
Code + Data oo
Application Code,
Application
Code + Data

Application Code

Memory Management Unit (MMU)

« Controls accesses to and from external memory

« Assigns access permissions to memory regions

« Performs virtual to physical address translation
Bus and Protocol (31)

Copyright © 2013-2017 by Ando Ki

Synchronous and asynchronous

& asynchronous & How about this

<+ No common clock + Is it synchronous or asynchronous?

+ E.g., HADDRY...] to HREADY
Rea_ /TN

I
Ack | i
& synchronous 1 —
It can be
<+ common clock

varied

+ use pre-defined timing point in terms of
clock-edge or # of clock-cycles to carry

& Clock-domain crossing: asynchronous
out bus operation

_a’ domai Clk_b’ domail
synchronous) J W (synchronous)

clk_a

Bus and Protocol (32)

Clock frequency and phase

Reference _,_l |_| |_| |_| |_| |_|

Synchronous — same frequency, same phase

a1 I M Il Il M

Asynchronous —out of frequency, out of phase

Isochronous - same frequenlt_:ly, out of phase

Copyright © 2013-2017 by Ando Ki Bus and Protocol (33)

Synchronous or not

125Mhz :
synchronous
signals

125Mhz

Wgﬂllf
asynchronous

100Mhz ignals

W;ll]lf
Logic 0

125Mhz
ngl]l Whenever the input signal D does not meet the Tsu

o I, (Setup) and Th (Hold) of the given D flip-flop,
ngl]l i metastability occurs.

Copyright © 2013-2017 by Ando Ki Bus and Protocol (34)

CDC and Multi-flip-flop synchronization

CDC: clock domain crossing dat

sig_a)
> sig_b oea [L LT L]

sig_a /
ao [| |

sig_b/0

sig_b/1 - \

'sig_b' can be settle down to '0’ or '1' depending on situation (fan-out, temperature, ...).

sig_a sig_b sig_b_sync
dat — D Q—»g_ D Q 9- D Q 955y

clk_a —
clk_b T T

multi-flip-flop synchronization dat

clk_a

sig_a

kb [] \ \ \

sig_b

sig_b_synch

value may not be in stable

Copyright © 2013-2017 by Ando Ki Bus and Protocol (35)

CDC problems

= Data can be lost with fast-to-slow clock

domain
& Solutions sig_a '
+ Edge detection dat — D Q —»|D Q —sig_b
+ Feedback or handshake clk a 7—‘,
clk_b
fast clock
ok 2 L UL
data in
(sig_a)
slow clock ‘ ‘ ‘ ‘ ‘ ‘
(clk_b)
data out
(sig_ba)
data lost
Copyright © 2013-2017 by Ando Ki Bus and Protocol (36)

CDC problems

& Parallel data can be inconsistency due to

meta-stability

= Solutions

<+ Synchronization and ignore some
intermediate cycles

+ MUX synchronization

+ Use single-bit changing code, such an

grey code

But not applicable for all applications

Copyright © 2013-2017 by Ando Ki

sig_a[0]
dat[0] D Q D Q — sig_b[0]
clk_a —
sig_a[1]
dat[1] D Q » D Q [— sig_b[1]
L *~—
clk_b
dat{1]
dat[0]
sigat]
sig_a[0]
wo_ [| |
sig_b[1]
sig_b[o]i

\ data inconsistency ,

Bus and Protocol (37)

Timing diagram

&= Functional Timing Diagram
+ assumes zero delays
<+ simply demonstrates logic relations

Copyright © 2013-2017 by Ando Ki

& Timing Diagram with delay
<+ tpHL: High-to-Low propagation delay
+ tpLH: Low-to-High propagation delay

O w>
=2

Bus and Protocol (38)

Timing diagram convention

Ideal signals have 0 rise and fall times

0
Figure 5.5 Ideal logic level

Normal signal representation: single and multi-bit

2NV

Figure 5.7 Single-signal waveform

;] [I

Figure 5.8 Multiple-signal waveform

Copyright © 2013-2017 by Ando Ki

A real signal has nonzero rise and fall times

Figure 5.6 Real signal

Unknown signals (when they are changing) representation

unknown \

(a) Single signal

(b) multiple signals

Figure 5.9 Unknown signals

Bus and Protocol (39)

Timing diagram convention

Floating signal

Signal
(a) Single signal

Signals

/ floating S

(b) multiple signals

Figure 5.10 Floating signals

Copyright © 2013-2017 by Ando Ki

Unknown or changing signals

IR\ S/

valid Transition valid Transition
high Low low high Valid high
Floating
Not ‘;C(",‘;e Changin or
Driven al Undefined
Tristae bl Dat:
- ata
FighZ Data

Bus and Protocol (40)

20

Signal causal relationships

. Cause

I3

signal A

signal B V... Result

(a) single cause and single result

Cause
Signal A t{ :

signal B

"Results
Signal C

(c) single cause and multiple results

Copyright © 2013-2017 by Ando Ki

. Causes

Signal A
Signal B

Signal C . Result

Signal D

(b) multiple causes and single result

..--Causes

Signal A
Signal B

Signal C 2 Results

Signal D

(d) multiple causes and multiple results

Bus and Protocol (41)

Timing diagram example

&= Latch
+ When en = 1, latch is transparent
D flows through to Q like a buffer
+ When en = 0, the latch is opaque

Q holds its old value independent of D
+ a.k.a. transparent latch or level-sensitive

latch
d—D Q}—q
en—G

Copyright © 2013-2017 by Ando Ki

= Flip-flop
+ When CLK rises, D is copied to Q
<+ At all other times, Q holds its value

+ a.k.a. positive edge-triggered flip-flop,
master-slave flip-flop

a—D Q—q
clk —

Bus and Protocol (42)

21

Timing diagram example

B An example of simple memory

clk
din[...] —»] ——> dout..]
add[..] —»| en
en —>» memory
we —»| we
o add..] A0 AL
dinf...] DO
dout[...] DO D1
write cycle read cycle
ok \ \ \ \
L /A N
we /N
addl..] A0 AL
din[...] DO
dout]...] DO : D1 :><><
write cycle read cycle
Copyright © 2013-2017 by Ando Ki Bus and Protocol (43)
Timing diagram example
= An example of AMBA APB read/write &= Read case o . . .

timing diagram with bus timing notation.

Bus fo high impedance

Bus change

PCLK

High impedance to stable bus PADDR

XX Addr 1

PADDR i Addr 1
PWRITE 0
Clock 1 SR | |
HIGH to LOW o pENABLE /N
Transient V PRDATA f) Data v JY
HIGH/LOW to HIGH T
Bus stable = Write case
T T2 T3 T

PWRITE —ﬂ

PSEL ﬂ
PENABLE J\—

PWDATA

Copyright © 2013-2017 by Ando Ki Bus and Protocol (44)

22

Timing diagram example

2 AMBA AHB four-beat wrapping t ! b " " b ¢
case Hewk L L

HADDR][31:0] :)C(0x38 >O< laxac X}(0230)O(0x34

g
wrranspiol)Rl e 0= IO =

XX

XX

XX

C

0

HBURSTIZ:0] |)) WRAP4 i
HWRITE __|

wseeza Y i X

wwoatazto))Y X (o) i =3 0% m L

HREADY |\/ W |/ V \Y V W

HrRoATAB1:0] | Y X o = = e

Copyright © 2013-2017 by Ando Ki Bus and Protocol (45)

Trends of interconnect
High performance system tends to adopt point-to-point switched interconnects.

2" Generation Point-to-Point
— Packet switched
— PHY: SERDES differential
— Lowest pin count
1%t Generation Point-to-Point
— Packet switched
— PHY: Source-sync differential

— Lower pin count 2 10 GHz
Example: HT/P-RIO < Example: PCI Ex/
S-RIO
Hierarchical Bus ’
— Bridged Hierarchy r
- Broadcast DEUTEE
— PHY: Single-ended Bridge! Device! Devicel
Example: PCI/ PCI-X < 133MHz ¢°e
&%
‘ ot
Shared Bus Q{‘
- Single segment Device | | Device| Device| Device| |Device R
: E;’T\a(gg?r?;le—ended \Devicel\Device”Device”Device”DeviceI
- Highest pin count Example: VME < 66MHz
P-RIO: Parallel RapidlO
S-RIO: Serial RapidlO
Copyright © 2013-2017 by Ando Ki Bus and Protocol (46)

23

Trends of interconnect

Serial /O / > 1GHz

Clock D covery | Device |
Point-to-Point vt vt

e Switch Fabric

Parallel VO vt ot
Source Synchronous <1GHz
Point-to-Point Device Device Infiniband, 3GIO...
S—— vt vt PCle, SRIO

Switch Fabric

Parallel VO * ﬂ #ﬂh
Shared Clock < 133MHz Device Device
Devi Devi
Shared Bus B | S RapidIO, POS PHY LA4...
Device Bridge Device Device
e | —

: < 33MHz : PCI64/66, PCI-X 133...
Device Device Device Device
e | | | S |

@
o
=
E
(]
)=
[
o
=
2
7]
>
(%]

[e E—
Device Device Device Device ISA, PCI32/33...

Copyright © 2013-2017 by Ando Ki Bus and Protocol (47)

Serial standards

8B/10B
ENDEC

3Gio™ 2.5 Gbps Yes
Serial ATA™ 1.5 Gbps Yes
InfiniBand™ 2.5 Gbps Yes

Standards Line Speed

Gb Ethernet 1.25 Gbps Yes
10Gb Ethernet (XAUI) 3.125Gbps Yes
Serial RapidiO™ 1.25 Gbps Yes
Xilinx 40G Backplane 3.125Gpbs Yes

Serial I/O

Eliminates
traditional
noise & clock
skew issues

Differential /0 3.125 Gbps and up!

(e.g. LVDS)

Clock Skew Limited
above ~1.0 Gbps
(Double Data Rate)

Traditional 1/0
Noise Limited schemes have
above ~200 Mbps limited Bandwidth
(Single Data Rate)

Single Ended /O

Copyright © 2013-2017 by Ando Ki Bus and Protocol (48)

24

References

& D. Del Corso et.al., Microcomputer buses and links, Academic press, 1986.

& D. Cohen, On holy wars and a plea for peace, IEEE Computer Vol.14, No.10,
Oct. 1981, p.48-54.

& S. Pasricha and N. Dutt, On-Chip Communication Architectures System on
Chip Interconnect, Morgan Kaufmann Pub. 2011.

& 7)ot% 9], %3 W 2 : HiPi-Bus (Highly Pipelined Bus : Hipi-Bus), t g4 =}
38} 3] Sharnt i 3 %@ (= A /A £ 5-E/CAD/VLSI) A|103 13, 1992.1,
31-37.

& Ando Ki et.al., Higly Pipelined Bus: HiPi-Bus, JTC-CSCC : Joint Technical
Conference on Circuits Systems, Computers and Communications, 1991.

& Seongwoon Kim and Ando Ki et.al., RACE on a physically distributed and
logically shared memory system.

Copyright © 2013-2017 by Ando Ki Bus and Protocol (49)

25

