
1

Bus and Protocol

Ando Ki, Ph.D.

(adki@future-ds.com)

2013 – 2017

Copyright © 2013-2017 by Ando Ki Bus and Protocol (2)

Agenda

What is BUS

How to send and receive data

How to select slave

How to select master

Transfer types

Burst transfers

Pipelined and split transfers

Data ordering

Justified or non-justified

Partial/narrow access

Alignment

Atomic

Clock frequency and phase

Synchronous or asynchronous

Timing diagram conventions

2

Copyright © 2013-2017 by Ando Ki Bus and Protocol (3)

How to integrate various components

Processing

core

FLASH

controller

SRAM

controller

DRAM

controller

USB controller

FLASH SRAM DRAM

Ethernet

controller

(MAC)

Tick timer
Interrupt

controller
LCD controller

HDMI

controller

 LCD with

touchscreen

Touch panel

controller

Camera

controller

FPU

Audio

controller

DMA

controller

DVI/HDMI/DP

Graphical

monitor

Camera

module

Mic and

speaker
Ethernet PHY

Cache MMU

SPI controler I2C controllerGPIO

Sensor

controller

USB PHY
Various

sensors

Switches and

LEDs

Copyright © 2013-2017 by Ando Ki Bus and Protocol (4)

How to integrate various components

Processing

core

FLASH

controller

SRAM

controller

DRAM

controller

USB controller

FLASH SRAM DRAM

Ethernet

controller

(MAC)

Tick timer
Interrupt

controller
LCD controller

HDMI

controller

 LCD with

touchscreen

Touch panel

controller

Camera

controller

FPU

Audio

controller

DMA

controller

DVI/HDMI/DP

Graphical

monitor

Camera

module

Mic and

speaker
Ethernet PHY

Cache MMU

SPI controler I2C controllerGPIO

Sensor

controller

USB PHY
Various

sensors

Switches and

LEDs

What to be considered

How to support different access patterns

e.g., processing core accesses instructions

and data

e.g., DMA moves a bunch of data as fast as

possible

e.g., video-out controller reads image

frames 30~60 times a second

e.g., video-in controller writes image frames

15~60 times a second

e.g., audio controller reads/writes PWM

data stream

How to guarantee error-free data

movement

How to provide fast response time and

sufficient bandwidth

Most of all, all components should be

accessed via processor

Need something special, which is called

bus, OCB (on-chip-bus), network, OCN

(on-chip-network), switch, ...

3

Copyright © 2013-2017 by Ando Ki Bus and Protocol (5)

What is bus

Bus means a set of common lines that electrically connects various blocks in

order to transfer data among them.

(버스란여러블록들이상호데이터를전송하기위해이들블록들을전기적으로연결
한공유신호선)

Protocol (communication protocol) is a set of rules to accomplish data transfer

among blocks along the bus.

(프로토콜(통신규약)은버스를통해데이터를전송하기위한규칙)

Processor

Memory Peripheral Peripheral

BUS

Copyright © 2013-2017 by Ando Ki Bus and Protocol (6)

How to send and receive data

Module A
D[…]

Module B D[…]

How does Module-B know the data is valid?

Module A

D[…]

Module B
D[…]

Valid

Valid
How does Module-A know Module-B got the data?

Module A

D[…]

Module B

D[…]

Valid
Valid

Ack Ack

How does Module-B know the data is stable enough to get?

Note that data ‘D[...]’ consists of multiple lines and there is

skew among signals.

Skew is the time difference among propagation

delays of any outputs of the same device.

Valid window will be very narrow.

D[0]

D[1]

D[2]

D[3]

D[4]

D[5]

expecting timing

fast arriving

fastest arriving

late arriving

latest arriving

valid

valid window

fast/late arriving

a b c d

a b c d

valid window

valid

D[...]

4

Copyright © 2013-2017 by Ando Ki Bus and Protocol (7)

How to send and receive data

Module A

D[…]

Module B

D[…]

Valid Valid

Clk Clk

Status[…]

Ack

S[…]

Ack

Dx

Module A

D[…]

Module B

D[…]

Valid Valid

Clk Clk

Status[…]

Ack

SxS[…]

Ack

wait

Dx

Module A

D[…]

Module B

D[…]

Valid Valid

Clk Clk

Status[…]

Ack

SxS[…]

Ack

wait

DzDy

What if Module B cannot respond at the given time?

How to use the bus more effectively while waiting the ack?

A series of transfers consisting of related or unrelated

can help utilization efficiency of the bus.

How to manage those transfers?

Copyright © 2013-2017 by Ando Ki Bus and Protocol (8)

How to send and receive data

Increase utilization by overlapping

Increase utilization by burst operation

Increase utilization using multiple outstanding and/

or out-of-order completion

Module A

D[]

Module Bvalid

S[...]

ack

DxD[]

valid

clk

Sx

ack

DzDy

SyS[] Sz Sw

Dw

overlap

clk

Module A

D[]

Module Bvalid

S[...]

ack

DxD[]

valid

clk

Sx0S[]

ack

Sx1

clk

Sx2

burst

Module A

D[]

Module Bvalid

S[...]

ack

clk

DaD[]

valid

clk

SbS[]

ack

DcDb

Sa Sc

wait a
wait b

wait c

5

Copyright © 2013-2017 by Ando Ki Bus and Protocol (9)

How to select one of many slaves

Decoder (or selector)

Select one by decoding address

Location of decoder

Centralized

Distributed

Processor

Memory Peripheral Peripheral

BUS

decoder

Processor

Memory Peripheral Peripheral

BUS

decoder decoder decoder

address

data

cmd/stat

A

D

C

A

D

C

b
u

s
 a

s
 a

 s
h

a
re

d
 m

e
d

ia

A X

Y

X==Y

my address

selected
A

Copyright © 2013-2017 by Ando Ki Bus and Protocol (10)

How to select one of many masters

Need selection/election before using

bus, since bus is shared resource

Arbitration

Defines which module gains access

to the bus

Location of arbiter

Centralized

Distributed

Processor

Memory Peripheral Peripheral

Processor
Master

(DMA)
arbiter

BUS

Processor

Memory Peripheral Peripheral

Processor Master

(DMA)

BUS

arbiter arbiter arbiter

6

Copyright © 2013-2017 by Ando Ki Bus and Protocol (11)

Bus arbitration

S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

Copyright © 2013-2017 by Ando Ki Bus and Protocol (12)

Algorithms and issues of arbitration

Algorithm of arbitration

Fixed priority based

Round-robin

Issues of arbitration

Fairness

Starvation

a situation where a block is unable to gain

bus access without any progress (오랜기간
아무런진전없이기다리는경우)

Live-lock

a situation where a block is unable to make

progress although doing something busily

(뭔가열심으로 일을하는데, 지전은없는경
우 – Cache에서 계속 invalidation 되거나,

…), it will eventually be resolved.

Deadlock

a situation where a block wait for some

condition that will not resolved forever.

7

Copyright © 2013-2017 by Ando Ki Bus and Protocol (13)

Starvation example

Clk

(highest priority) REQ0

REQ1

REQ2

REQ3

(lowest priority) REQ4

GRT0

GRT1

GRT2

GRT3

GRT4

REQ4 starved

Copyright © 2013-2017 by Ando Ki Bus and Protocol (14)

Fairness example

Clk

(highest priority) REQ0

REQ1

REQ2

REQ3

(lowest priority) REQ4

GRT0

GRT1

GRT2

GRT3

GRT4

Keep out higher priority
new rounda round

8

Copyright © 2013-2017 by Ando Ki

Live-lock example

P0

X I

P1

A M

P2

X I

P3

X I

A

P0

A I

P1

A M

P2

X I

P3

X I

A

P0

A I

P1

A V

P2

X I

P3

X I

A

P0 accesses A, but incurs cache miss

P0 cache tries to get data of address A.

P1 cache invalidates the access since it

has modified value.

P1 cache updates its data to the memory.

Meanwhile, P2 tries to access A that is

invalid at that time.

P0

A I

P1

A I

P2

A M

P3

X I

A

P0

A I

P1

A I

P2

A M

P3

X I

A

P0

A I

P1

A I

P2

A V

P3

X I

A

P2 cache gets the data and modifies it.

P0 cache retries to get data of address A.

P2 cache invalidates the access.

P2 cache updates its data to the memory.

Meanwhile, P3 tries to access A that is

invalid at that time.

Bus and Protocol (15)

Copyright © 2013-2017 by Ando Ki Bus and Protocol (16)

Dead-lock example

master 0

master 1

arbiter

master 2

master 3

arbiter

Bus bridge
AtoB

Bus bridge
BtoA

Bus A Bus B

slave X slave Y

master 0

master 1

arbiter

master 2

master 3

arbiter

Bus bridge
AtoB

Bus bridge
BtoA

Bus A Bus B

slave X slave Y

 master 0 tries to

access slave Y .
 master 3 tries to

access slave X .

9

Copyright © 2013-2017 by Ando Ki Bus and Protocol (17)

Transfer types

How to use bus more efficiently

Latency minimization

Throughput maximization

Speed v.s. bandwidth (= capability)

How to capture access-intentions

It can be used to make bus efficient.

DMA uses accesses that move a block of

data

Need to support burst

CPU generates two types of accesses

and the tip about types will be used by

cache

instruction access: it never be modified by

the CPU

data access: it may be altered by the CPU

near future

CPU with cache needs more types of

transfers

[HiPi-Bus case]

NRD: Normal-Read

NWR: Normal-Write

RFR: Read-For-Read

RFW: Read-For-Write

LCR: Lock-Read

LCW: Lock-Write

WRB: Writeback

INV: Invalidation

[AMBA AHB case]

NONSEQ – SEQ

SINGLE

INCR/INCR4/INCR8/INCR16

WRAP4/WRAP8/WRAP16

Copyright © 2013-2017 by Ando Ki Bus and Protocol (18)

Burst transfers (1/3)

Burst transfer in the bus is a means of

data movement consisting of more than

one transfer in order to get a higher

throughput.

Burst length

num of beats in a burst

Burst size

num of bytes moved in a single beat

Addressing mode

incremental

wrapping

fixed

stride

Other issues

partial burst size case, in which burst size is

smaller than data bus width

b
u

rs
t
s
iz

e

burst length

a
d

d
re

s
s
i

n
g

 m
o

d
e

10

Copyright © 2013-2017 by Ando Ki Bus and Protocol (19)

Burst transfers (2/3)

burst (locked)

Address and data are locked together

Single pipeline stage

If one slave is very slow, all data is held

up.

one address for burst

One Address for entire burst

A11 A12 A13 A14 A21 A22 A23

D11 D12 D13 D14 D21 D22 D23

address

data

A11 A12 A13 A14 A21 A22 A23

D11 D12

address

data

Burst (locked)

Burst (slow slave)

A11 A21

D11 D12 D13 D14 D21 D22 D23

address

data

One address for a burst

Copyright © 2013-2017 by Ando Ki Bus and Protocol (20)

Burst transfers (3/3)

multiple outstanding bursts

One Address for entire burst

Allows multiple outstanding addresses

out-of-order completion

Masters can issue multiple ordered

addresses

Fast slaves may return data ahead of

slow slaves

data interleaving

Returned data can be interleaved

A11 A21

D11 D12 D13 D14 D21 D22 D23

address

data

A31

Multiple outstanding bursts

A11 A21

D11 D12 D13 D14D21 D22 D23

address

data

A31

A11 A21

D11 D12 D13 D14D21 D22 D23

address

data

A31

Data interleaving

11

Copyright © 2013-2017 by Ando Ki Bus and Protocol (21)

Pipelined and split transfers

Split bus protocol

Split transfers improve the overall

utilization of the bus by separating the

operation of the master providing the

address to a slave from the operation of

the salve responding with the appropriate

data.

A11 A21 A31 A41

D11 D21 D22

address

data

A11 A21

D11D21

address

data

A31

Overlapping address and data
results in pipelining.

A11

Split address and data by retrying.

Pipeline bus protocol

arbitration, address, data phases can be

overlapped

Copyright © 2013-2017 by Ando Ki Bus and Protocol (22)

Data ordering (1/2)

Bit ordering within a byte Byte ordering of a multiple-of-byte

0x0

0x1

0x2

0x3

W

X

Y

Z

0x4

0x5

0x6

0x7

0xA

W X Y Z

WXYZ

Memory in byte-wise

read 4-

byte from

address

0x4

LSBMSB

LSBMSB

byte (8-bit)

0 1 2 3 4 5 6 7

7 6 5 4 3 2 1 0

identification

numbering

byte (8-bit)

msblsb

lsbmsb

magnitude

weighting

Little-endian

Big-endian

12

Copyright © 2013-2017 by Ando Ki Bus and Protocol (23)

Data ordering (2/2)

Bit ordering within a byte

Usually most significant bit is called 7th bit,

but not always true.

Byte ordering

How should bytes within multi-byte word

be ordered in memory?

Big-endian: Least significant byte has

highest address

Most significant byte has lowest address

Sun SPARC, HP, Macs, PowerPC, MIPS,

DLX, IBM370, OpenRISC

best to handle left-to-right text.

Little-endian: Least significant byte has

lowest address

Intel Pentium, DEC Alpha, ARM, VAX, PDP-

11, Core-A

best to handle position-dependent data

such as number.

32-bit register

MSB

31 0

3

2

1

0

Memory

little-endian

big-endian

Refer to: ‘On holy wars and a plea for peace’ by D. Cohen, IEEE Computer Vol.14,

No.10, Oct. 1981, p.48-54.

byte (8-bit)

7 6 5 4 3 2 1 0

byte (8-bit)

lsbmsb

Copyright © 2013-2017 by Ando Ki Bus and Protocol (24)

Justified or non-justified

Justified bus

Byte always travels on rightmost or
leftmost quarter of bus

size determines the lanes that data actually
use.

Wishbone bus

Non-justified bus / unjustified bus

Bus lanes are extension of memory bank
lane.

address determines the lanes that data
actually use.

More complex cases with endianness.

AMBA bus

E.g., how to interface 32-bit memory with
64 or 128-bit AXI bus?

D[31:24]

D[23:16]

D[15:8]

D[7:0]

4-byte block

Wrapper Wrapper

2-byte block 1-byte block

D[31:24]

D[23:16]

D[15:8]

D[7:0]

4-byte block 2-byte block 1-byte block

13

Copyright © 2013-2017 by Ando Ki Bus and Protocol (25)

Partial/narrow access

For example

How to read/write two-byte through 32-bit

data bus?

For read, read full width and ignore some.

For write, need something to indicate which

bytes are important

Partial access is used to read/write a

fewer number of bytes than the data bus

width.

Byte enable

Enable signals are given to indicate which

byte are active.

DATA[31:0] with BE[3:0]

Size and address

Size and a lower bits of address determines

active bytes.

DATA[31:0] with SIZE[1:0] and ADDR[1:0]

D[31:24] D[23:16] D[15:8] D[7:0]DATA[31:0]

BE[3:0]

D[31:24] D[23:16] D[15:8] D[7:0]DATA[31:0]

BE[3:0]

D[31:24] D[23:16] D[15:8] D[7:0]DATA[31:0]

SIZE[1:0] 2B

ADDR[1:0] 2

Copyright © 2013-2017 by Ando Ki Bus and Protocol (26)

Alignment of access

Are there any rule between address and

size of access

two-byte access should be with address

with a multiple of 2.

E.g, 0, 2, 4, 6, …

four-byte access should be with address

with a multiple of 4.

E.g., 0, 4, 8, 16, …

How about three-byte case

Usually most processor does not generate

this kind of access

So, most bus systems does not support this,

but there are exceptions.

How about burst accesses with bus

wider than 4-bytes data lane?

E.g., 64-bit wide (8-byte data lane) or

128-bit wide

Is it possible to make all access be data-

width aligned?

No, then what happens. Or how to deal with

it.

Let see this for AXI case.

14

Copyright © 2013-2017 by Ando Ki

Atomic & mutual exclusion

Bank B
(Branch)

Bank A
(H.Q.)

ATM

1,000

500 500

1,000 - 500 1,000 - 500

???

Person X Person Y

Bus and Protocol (27)

Bank B read Bank B write ATM read ATM writeBank B
calculate

ATM
calculate

Bank B read Bank B writeBank B
calculate

ATM read ATM writeATM
calculate

read-modify-write read-modify-write

Copyright © 2013-2017 by Ando Ki Bus and Protocol (28)

Atomic operations (1/2)

p
ro

c
e

s
s
 w

id
e

s
h

a
re

d
 r

e
s
o

u
rc

e
s

System wide shared resources

Operating Systems

R0 R1 Rx

process

(task)

process

(task)

process

(task)

thread thread thread

Application requires mutual exclusion in

order to protect critical section.

What kind of relations with system bus?

15

Copyright © 2013-2017 by Ando Ki Bus and Protocol (29)

Atomic operations (2/2)

Microprocessors have special

instructions for atomic access in order to

support mutual exclusion.

ARM: SWAP

LDREX (load exclusive), STREX (store

exclusive)

MC680X0: CAS (Compare And Swap)

Intel: lock inc, lock dec, lock xchg, lock

add, lock sub

Sparc: cas, ldstub

MIPS: ll (load linked), sc (store conditional)

DEC Alpha: ld_l, stl_c

PowerPC: lwarx, stwcx

Core-A: EXCHG

A[…]

AS

Clk

D[…]

DS

LOCK

locked-read locked-write

None Can Access Bus

critical

section

lock(M)

unlock(M)

loop:

tas M

jmi loop

rts

write M, 0

locked_read M

locked_write M, 1

application machine instruction bus operation

tim
e System should

guarantee that none
can access M

between RMW (read-
modify-write) cycle

R
M

W

Copyright © 2013-2017 by Ando Ki Bus and Protocol (30)

Atomic operations

...

...

while (swap(X, 1));

... // critical section

...

X = 0; // unlock

...

Program A

...

...

while (swap(X, 1));

... // critical section

...

X = 0; // unlock

...

Program B

...

...

while (swap(X, 1));

... // critical section

...

X = 0; // unlock

...

Program C

‘swap(X, 1);’ consists of

locked-read X

It gets current value of X

locked-write 1 to X

It updates X by 1 regardless its current

value

locked-read and locked-write are

protected by bus as read-modify-write

Only one can enter the critical section at

a given time and any other cannot enter

the region until the first one unlock it.

16

Copyright © 2013-2017 by Ando Ki

Memory protection

Bus and Protocol (31)

Memory Management Unit (MMU)

• Controls accesses to and from external memory

• Assigns access permissions to memory regions

• Performs virtual to physical address translation

Copyright © 2013-2017 by Ando Ki Bus and Protocol (32)

Synchronous and asynchronous

asynchronous

No common clock

synchronous

common clock

use pre-defined timing point in terms of

clock-edge or # of clock-cycles to carry

out bus operation

How about this

Is it synchronous or asynchronous?

E.g., HADDR[…] to HREADY

Clock-domain crossing: asynchronous

Req

Ack

Req

Clk

Ack

‘clk_a’ domain

(synchronous)

‘clk_b’ domain

(synchronous)

clk_a clk_b

Req

Clk

Ack

It can be
varied

17

Copyright © 2013-2017 by Ando Ki Bus and Protocol (33)

Clock frequency and phase

Isochronous - same frequency, out of phase

Asynchronous – out of frequency, out of phase

Synchronous – same frequency, same phase

Reference

C

A

B

Copyright © 2013-2017 by Ando Ki Bus and Protocol (34)

Synchronous or not

synchronous
signals

125Mhz

asynchronous
signals

125Mhz

100Mhz

????

125Mhz

125Mhz

D Q D Q

clk_a clk_b
‘clk_a’ domain ‘clk_b’ domain

Whenever the input signal D does not meet the Tsu

(Setup) and Th (Hold) of the given D flip-flop,

metastability occurs.

18

Copyright © 2013-2017 by Ando Ki Bus and Protocol (35)

CDC and Multi-flip-flop synchronization

D Q D Q

clk_a

clk_b

dat
sig_a

sig_b clk_a

sig_a

dat

clk_b

sig_b/0

sig_b/1

'sig_b' can be settle down to '0' or '1' depending on situation (fan-out, temperature, ...).

D Q D Q

clk_a

clk_b

dat
sig_a sig_b

D Q
sig_b_sync

multi-flip-flop synchronization

clk_a

sig_a

dat

clk_b

sig_b

sig_b_synch

value may not be in stable

CDC: clock domain crossing

Copyright © 2013-2017 by Ando Ki Bus and Protocol (36)

CDC problems

Data can be lost with fast-to-slow clock

domain

Solutions

Edge detection

Feedback or handshake

fast clock

(clk_a)

slow clock

(clk_b)

data in

(sig_a)

data out

(sig_ba)
data lost

D Q D Q

clk_a

clk_b

dat
sig_a

sig_b

19

Copyright © 2013-2017 by Ando Ki Bus and Protocol (37)

CDC problems

Parallel data can be inconsistency due to

meta-stability

Solutions

Synchronization and ignore some

intermediate cycles

MUX synchronization

Use single-bit changing code, such an

grey code

But not applicable for all applications

D Q D Q

clk_a

dat[0]
sig_a[0]

sig_b[0]

D Q D Q

clk_b

dat[1]
sig_a[1]

sig_b[1]

clk_a

sig_a[1]

dat[0]

clk_b

sig_b[1]

sig_b[0]

dat[1]

sig_a[0]

data inconsistency

Copyright © 2013-2017 by Ando Ki Bus and Protocol (38)

Timing diagram

Functional Timing Diagram

assumes zero delays

simply demonstrates logic relations

Timing Diagram with delay

tpHL: High-to-Low propagation delay

tpLH: Low-to-High propagation delay

A

B

C

w

A

C

B

W

A

B

C

w

A

C

B

W

t
pHL t

pLH

20

Copyright © 2013-2017 by Ando Ki Bus and Protocol (39)

Timing diagram convention

1

0

Figure 5.5 Ideal logic level

90% V
DD

10% V
DD

1

0

t
rise

t
fall

Figure 5.6 Real signal

Figure 5.7 Single-signal waveform

1

0

1

0

Figure 5.8 Multiple-signal waveform

(a) Single signal

unknown

unknown

(b) multiple signals

Figure 5.9 Unknown signals

Ideal signals have 0 rise and fall times A real signal has nonzero rise and fall times

Normal signal representation: single and multi-bit Unknown signals (when they are changing) representation

Copyright © 2013-2017 by Ando Ki Bus and Protocol (40)

Timing diagram convention

Signal

floating

(a) Single signal

Signals

floating

(b) multiple signals

Figure 5.10 Floating signals

Floating signal

Valid

high

Transition

Low

Valid

low

Transition

high
Valid high

Floating

Not

Driven

Tri-state

High-Z

Active

Valid

Stable

Data

Changin or

Undefined

Data

Unknown or changing signals

21

Copyright © 2013-2017 by Ando Ki Bus and Protocol (41)

Signal causal relationships

Copyright © 2013-2017 by Ando Ki Bus and Protocol (42)

Timing diagram example

Latch

When en = 1, latch is transparent

D flows through to Q like a buffer

When en = 0, the latch is opaque

Q holds its old value independent of D

a.k.a. transparent latch or level-sensitive

latch

Flip-flop

When CLK rises, D is copied to Q

At all other times, Q holds its value

a.k.a. positive edge-triggered flip-flop,

master-slave flip-flop

d

en

q

d

CLK

q

D Q

G

qd

en

D Q qa

clk

22

Copyright © 2013-2017 by Ando Ki Bus and Protocol (43)

Timing diagram example

An example of simple memory

memory

din[...]

add[...]

en

we

clk

dout[...]

clk

we

add[...]

en

din[...]

dout[...]

A0 A1

D0

D0 D1

write cycle read cycle

clk

we

add[...]

en

din[...]

dout[...]

A0 A1

D0

D0 D1

write cycle read cycle

Copyright © 2013-2017 by Ando Ki Bus and Protocol (44)

Timing diagram example

An example of AMBA APB read/write

timing diagram with bus timing notation.

Read case

Write case

23

Copyright © 2013-2017 by Ando Ki Bus and Protocol (45)

Timing diagram example

AMBA AHB four-beat wrapping burst

case

Copyright © 2013-2017 by Ando Ki Bus and Protocol (46)

Trends of interconnect

High performance system tends to adopt point-to-point switched interconnects.

P-RIO: Parallel RapidIO

S-RIO: Serial RapidIO

24

Copyright © 2013-2017 by Ando Ki Bus and Protocol (47)

Trends of interconnect

PCIe, SRIO

Copyright © 2013-2017 by Ando Ki Bus and Protocol (48)

Serial standards

25

Copyright © 2013-2017 by Ando Ki Bus and Protocol (49)

References

D. Del Corso et.al., Microcomputer buses and links, Academic press, 1986.

D. Cohen, On holy wars and a plea for peace, IEEE Computer Vol.14, No.10,

Oct. 1981, p.48-54.

S. Pasricha and N. Dutt, On-Chip Communication Architectures System on

Chip Interconnect, Morgan Kaufmann Pub. 2011.

기안도외, 고중첩버스 : HiPi-Bus (Highly Pipelined Bus : Hipi-Bus), 대한전자
공학회학술발표회 논문집 (반도체/재료부품/CAD/VLSI) 제10권 1호, 1992.1,

31-37.

Ando Ki et.al., Higly Pipelined Bus: HiPi-Bus, JTC-CSCC : Joint Technical

Conference on Circuits Systems, Computers and Communications, 1991.

Seongwoon Kim and Ando Ki et.al., RACE on a physically distributed and

logically shared memory system.

