
1

Verification of UART using APB BFM

Ando Ki

(adki@future-ds.com)

2013 - 2017

Copyright © 2013-2017 by Ando Ki UART verification (2)

Agenda

RS-232C protocol

RS-232C and UART

UART and line driver

Type of UARTS

OpenCores UART 16550 core

Frame format

Baud rate control

Initialize

How to transmit a character

How to receive a character

UART HW spec.

How to control HW through SW

Verification plan

APB BFM and APB tasks

TTY model

Simulation

2

Copyright © 2013-2017 by Ando Ki UART verification (3)

RS-232C protocol

01000001010011000111

startstart stopstop

parityparity
Variable time

between
characters

No clock signal sent

Every word is synchronized using start bit

and internal clock on either side keeps tabs

on the timing.

Asynchronous serial data transmission: RS-232C protocol

RS-232C: Recommended Standards

Copyright © 2013-2017 by Ando Ki UART verification (4)

RS-232-C and UART (1/2)

RS-232-C

An EIA standard that defines a commonly used
serial communications scheme.

It is widely used to transfer data between
computers or other devices using an
asynchronous serial link at speeds ranging from
110 to 115,200 baud.

It uses 25 or 9 pin connector.

Signal voltages between +3 to +15 volts are
considered ON, Spacing, or Binary 0.

Signal voltages between -15 to -3 volts are
considered OFF, Marking or Binary 1, which
also representing idle state.

In the context RS-232-C, the computer is DTE
(Data Terminal Equipment) and the modem is
DCE (Data Communication Equipment).

UART (Universal Asynchronous Receiver and

Transmitter)

a semiconductor chip providing the RS-232-C

asynchronous serial communication protocol.

One side of UART is an interface to processor

and the other side is the serial port.

3

Copyright © 2013-2017 by Ando Ki UART verification (5)

RS-232-C and UART (2/2)

RS-232-C uses active low signaling for data.

RS-232-C uses active high signaling for

control.

UART uses active high signaling for data.

UART uses active low signaling for control.

0 0 0 0 0 0 1 0 11

stopstart

paritydata

Time

0 0 0 0 0 0 1 0 11

stopstart

paritydata

Time

Copyright © 2013-2017 by Ando Ki UART verification (6)

UART and line driver

It will be an embedded system or

SoC.

STX

SRX

UART

1
0
0
0
1
1
1

mP

TTL (5/0V)
LVTTL (3.3/0V)

+/- 12V

Line driver

4

Copyright © 2013-2017 by Ando Ki UART verification (7)

Types of UARTS

Type remarks

8250 The first UART in this line. It doesn't contain any scratch registers. 8250A is a modernized version of 8250, its bus operating speed is very fast.

8250A The bus operating speed of this UART is greater than 8250's. It is used in the same way as 16450 in the sphere of software.

8250B Very similar to that of the 8250 UART.

16450 Used in AT's (Improved bus speed over 8250's). Works stable at 38.4KBPS. Widespread today.

16550 This line is the first generation of buffered UART. This line has 16-byte buffer, however it doesn't work and is replaced with the 16550A.

16550A This line is the most widespread UART version used for high-speed connection of modems with 14.4KBPS and 28.8KBPS rates. They made sure

the FIFO buffers worked on this UART.

16650 New generation of UART. Contains 32 bytes of FIFO, programmed register of X-On/X-Off characters and supports power management.

16750 Produced by Texas Instruments. Contains 64-byte FIFO buffer.

Copyright © 2013-2017 by Ando Ki UART verification (8)

16550 and 8250

5

Copyright © 2013-2017 by Ando Ki UART verification (9)

OpenCores UART 16550 core

http://www.opencores.org/projects.cgi/we

b/uart16550/overview

The UART (Universal Asynchronous

Receiver/Transmitter) core provides

serial communication capabilities, which

allow communication with modem or

other external devices, like another

computer using a serial cable and RS232

protocol. This core is designed to be

maximally compatible with the industry

standard National Semiconductors’

16550A device.

Features

WISHBONE interface in 32-bit or 8-bit

data bus modes (selectable)

FIFO only operation

Register level and functionality

compatibility with NS16550A (but not

16450).

Debug Interface in 32-bit data bus mode.

APB interface has been adopted for this

project

Copyright © 2013-2017 by Ando Ki UART verification (10)

OpenCores UART CSR (1/2)

Name Addr W Access Description

Receiver Buffer RB 0 8 R Receiver FIFO output

Transmitter Holding

Register

THR 0 8 W Transmit FIFO input

Interrupt Enable IER 1 8 RW Enable/Mask interrupts

generated by the UART

Interrupt Identification IIR 2 8 R Get interrupt information

FIFO Control FCR 2 8 W Control FIFO options

Line Control Register LCR 3 8 RW Control connection

Modem Control MCR 4 8 W Controls modem

Line Status LSR 5 8 R Status information

Modem Status MSR 6 8 R Modem Status

6

Copyright © 2013-2017 by Ando Ki UART verification (11)

OpenCores UART CSR (2/2)

Name Addr W Access Description

Divisor Latch Byte 1

(LSB)

CDRl 0 8 RW The LSB of the divisor latch

Divisor Latch Byte 2 CDRh 1 8 RW The MSB of the divisor latch

Two clock divisor registers (CDR) together forming one 16-bit.
The CDR is accessed when 7th (DLAB) bit of LCR is set to 1.

Copyright © 2013-2017 by Ando Ki UART verification (12)

IER: interrupt enable register

Bit # Access Description

0 RW Received Data available interrupt

‘0’ – disabled

‘1’ – enabled

1 RW Transmitter Holding Register empty interrupt

‘0’ – disabled

‘1’ – enabled

2 RW Receiver Line Status Interrupt

‘0’ – disabled

‘1’ – enabled

3 RW Modem Status Interrupt

‘0’ – disabled

‘1’ – enabled

7-4 RW Reserved. Should be logic ‘0’.

Reset value: 00h

7

Copyright © 2013-2017 by Ando Ki UART verification (13)

IIR: interrupt identification register

bit pr

i

Interrupt Type Interrupt Source Interrupt Reset Control

3 2 1

0 1 1 1 Receiver Line

Status

Parity, Overrun or Framing errors or

Break Interrupt

Reading the Line Status

Register

0 1 0 2 Receiver Data

available

FIFO trigger level reached FIFO drops below trigger

level

1 1 0 2 Timeout Indication There’s at least 1 character in the FIFO

but no character has been input to the

FIFO or read from it for the last 4 Char

times.

Reading from the FIFO

(Receiver Buffer Register)

0 0 1 3 Transmitter

Holding Register

empty

Transmitter Holding Register Empty Writing to the Transmitter

Holding Register or reading

IIR.

0 0 0 4 Modem Status CTS, DSR, RI or DCD. Reading the Modem status

register.

Reset value: C1h

Copyright © 2013-2017 by Ando Ki UART verification (14)

FCR: FIFO control register

Bit # Access Description

0 W Ignored (Used to enable FIFOs in NS16550D). Since this UART only supports

FIFO mode, this bit is ignored.

1 W Writing a ‘1’ to bit 1 clears the Receiver FIFO and resets its logic. But it doesn’t

clear the shift register, i.e. receiving of the current character continues.

2 W Writing a ‘1’ to bit 2 clears the Transmitter FIFO and resets its logic. The shift

register is not cleared, i.e. transmitting of the current character continues.

5-3 W Ignored

7-6 W Define the Receiver FIFO Interrupt trigger level

‘00’ – 1 byte

‘01’ – 4 bytes

‘10’ – 8 bytes

‘11’ – 14 bytes

Reset value: C0h

8

Copyright © 2013-2017 by Ando Ki UART verification (15)

LCR: line control register (1/2)

Bit # Access Description

1-0 RW Select number of bits in each character

‘00’ – 5 bits; ‘01’ – 6 bits; ‘10’ – 7 bits; ‘11’ – 8 bits

2 RW Specify the number of generated stop bits

‘0’ – 1 stop bit

‘1’ – 1.5 stop bits when 5-bit character length selected and

2 bits otherwise

Note that the receiver always checks the first stop bit only.

3 RW Parity Enable

‘0’ – No parity

‘1’ – Parity bit is generated on each outgoing character and

is checked on each incoming one.

4 RW Even Parity select

‘0’ – Odd number of ‘1’ is transmitted and checked in each word (data and

parity combined). In other words, if the data has an even number of ‘1’ in it,

then the parity bit is ‘1’.

‘1’ – Even number of ‘1’ is transmitted in each word.

Copyright © 2013-2017 by Ando Ki UART verification (16)

LCR: line control register (1/2)

Bit # Access Description

5 RW Stick Parity bit.

‘0’ – Stick Parity disabled

‘1’ - If bits 3 and 4 are logic ‘1’, the parity bit is transmitted and checked as

logic ‘0’. If bit 3 is ‘1’ and bit 4 is ‘0’ then the parity bit is transmitted and

checked as ‘1’.

6 RW Break Control bit

‘1’ – the serial out is forced into logic ‘0’ (break state).

‘0’ – break is disabled

7 RW Divisor Latch Access bit. (DLAB)

‘1’ – The divisor latches can be accessed

‘0’ – The normal registers are accessed

Reset value: 03h

9

Copyright © 2013-2017 by Ando Ki UART verification (17)

LSR: line status register (1/3)

Bit # Access Description

0 R Data Ready (DR) indicator.

‘0’ – No characters in the FIFO

‘1’ – At least one character has been received and is in the FIFO.

1 R Overrun Error (OE) indicator

‘1’ – If the FIFO is full and another character has been received in the

receiver shift register. If another character is starting to arrive, it will

overwrite the data in the shift register but the FIFO will remain intact. The bit

is cleared upon reading from the register. Generates Receiver Line Status

interrupt.

‘0’ – No overrun state

2 R Parity Error (PE) indicator

‘1’ – The character that is currently at the top of the FIFO has been received

with parity error. The bit is cleared upon reading from the register.

Generates Receiver Line Status interrupt.

‘0’ – No parity error in the current character

Copyright © 2013-2017 by Ando Ki UART verification (18)

LSR: line status register (2/3)

Bit # Access Description

3 R Framing Error (FE) indicator

‘1’ – The received character at the top of the FIFO did not have a valid stop

bit. Of course, generally, it might be that all the following data is corrupt. The

bit is cleared upon reading from the register. Generates Receiver Line

Status interrupt.

‘0’ – No framing error in the current character

4 R Break Interrupt (BI) indicator

‘1’ –A break condition has been reached in the current character. The break

occurs when the line is held in logic 0 for a time of one character (start bit +

data + parity + stop bit). In that case, one zero character enters the FIFO

and the UART waits for a valid start bit to receive next character. The bit is

cleared upon reading from the register. Generates Receiver Line Status

interrupt.

‘0’ – No break condition in the current character

10

Copyright © 2013-2017 by Ando Ki UART verification (19)

LSR: line status register (3/3)

Bit # Access Description

5 R Transmit FIFO is empty.

‘1’ – The transmitter FIFO is empty. Generates Transmitter Holding Register

Empty interrupt. The bit is cleared when data is being been written to the

transmitter FIFO.

‘0’ – Otherwise

6 R Transmitter Empty indicator.

‘1’ – Both the transmitter FIFO and transmitter shift register are empty. The

bit is cleared when data is being been written to the transmitter FIFO.

‘0’ – Otherwise

7 R ‘1’ – At least one parity error, framing error or break indications have been

received and are inside the FIFO. The bit is cleared upon reading from the

register.

‘0’ – Otherwise.

Copyright © 2013-2017 by Ando Ki UART verification (20)

Frame format

0 D0 D1 D2 D3 D4 D5 D6 D7 1

Start bit Stop bitData

Lsb goes first

0 D0 D1 D2 D3 D4 D5 D6 D7 1

Start bit Stop bitData

P

Parity bit

11

Copyright © 2013-2017 by Ando Ki UART verification (21)

Baud rate control

5.0
16

rate. baud is BR

elatch valudivisor is DR speed,clock input is F e wher

 BR16
DR

F

I

I








BR

F
DR I

Calculate the value of divisor latches (DL[15:8] and DL[7:0]) for 9,600 baud
rate with 33MHz input clock.

Copyright © 2013-2017 by Ando Ki UART verification (22)

Initialize

Upon reset the followings are done by
hardware (UART core)

The receiver and transmitter FIFOs are cleared
including shift registers.

The divisor latch register is set to 0.

The line control register is set to 8-bit data, no
parity, 1 stop bit.

All interrupt are disabled in the interrupt enable
register.

Perform the following during UART
initialization phase

Set bit 7 of LCR to 1 to access divisor latches.

Set the divisor latches, MSB first, LSB next.
See baud rate control

Set bit 7 of LCR to 0.

Set the FIFO trigger level of FCR.

Enable desired interrupt by setting IER.

initialize

LCR[7] ß 1

end

CDRh ß MSB

CDRl ß LSB

LCR[7] ß 0

FCR ß 0x1

IEA ß 0x1

12

Copyright © 2013-2017 by Ando Ki UART verification (23)

How to transmit a character

 Send a

character

Read LSR

LSR[5]==1

Write THR

return

No

Yes

unsigned int
uart_put_char(char d) {
while (!(_UART->LSR&0x20));
// wait until transmitter FIFO is empty
_UART->RB_THR = d;
return (unsigned int)d;

}

Copyright © 2013-2017 by Ando Ki UART verification (24)

How to receive a character

Receive a

character

Read LSR

LSR[0]==1

Read RB

return

No

Yes

unsigned int
uart_get_char(void) {

while (!(_UART->LSR&0x1));
// wait until a character has been received
return (unsigned int)_UART->RB_THR;

}

13

Copyright © 2013-2017 by Ando Ki UART verification (25)

UART hardware specification

UART (Universal Asynchronous Receiver and

Transmit) is a semiconductor chip

It implements RS-232-C asynchronous serial

communication protocol.

One side of it is a parallel interface to the

processor and the other side is the RS-232-C

serial port.

UART has CSR (Control and Status Register)

The right-hand side shows UART16550.

CSR name Add W Access

Receiver Buffer RB 0 8 R

Transmitter Holding THR 0 8 W

Interrupt Enable IER 1 8 RW

Interrupt Identification IIR 2 8 R

FIFO Control FCR 2 8 W

Line Control Register LCR 3 8 RW

Modem Control MCR 4 8 W

Line Status LSR 5 8 R

Modem Status MSR 6 8 R

0111000101

startstop parity

STX

SRX

UART

1
0
0
0
1
1
1

mP UART

1
0
0
0
1
1
1

mP

SRX

STX

Full-duplex
Line driver

Lsb goes
first

Copyright © 2013-2017 by Ando Ki UART verification (26)

UART hardware specification

apb_uart

PRESETn

PCLK

PSEL

PENABLE

PADDR[31:0]

PWDATA[31:0]

PRDATA0[31:0]

apb_interface

uart_regs

(OpenCore

U16550)

adr_o[2:0]

dat8_i[7:0]

dat8_o[7:0]

re_o

we_o

srx

stx

reset

clk

PWRITE

interrupt

PCLK

PSEL

PENABLE

PWRITE

PADDR

PWDATA

PRDATA Z

adr

dat_o

dat_i

we_o

re_o

Z

Write Read

A
M

B
A

 A
P

B
 P

ro
to

c
o

l
U

A
R

T
 r

e
g

 p
ro

to
c
o

l

UART16550 hardware specification

14

Copyright © 2013-2017 by Ando Ki UART verification (27)

How to control HW through SW

unsigned int
put_char(char d) {
while (!(_UART->LSR&0x20));
// wait until transmitter FIFO is empty

_UART->RB_THR = d;
return (unsigned int)d;

}

static struct uart16550 {
unsigned char RB_THR;
unsigned char IER;
unsigned char IIR_FCR;
unsigned char LCR;
unsigned char MCR;
unsigned char LSR;
unsigned char MSR;

} *_UART;

unsigned int
get_char(void) {
while (!(_UART->LSR&0x1));
// wait until a character has been received
return (unsigned int)_UART->RB_THR;

}

void
uart_init(void* UartStart) {

extern void uart_set_baud(unsigned int);
_UART = (struct uart16550*)UartStart;
uart_set_baud(19200);
_UART->IIR_FCR = 0x01;
_UART->IER = 0x01;

}

Receive a

character

Read LSR

LSR[0]==1

Read RB

return

No

Yes

 Send a

character

Read LSR

LSR[5]==1

Write THR

return

No

Yes

Copyright © 2013-2017 by Ando Ki UART verification (28)

How to control HW through SW

Standard input and

output library

functions

UART hardware

 // stdio.c

 int printf(char *fmt, …) {
 …
 put_char(c);
 …
 }

 int scanf(char *fmt, …) {
 …
 c = get_char();
 …
 }

 // sio.c

 static struct uart16550 {
 unsigned char RB_THR;
 unsigned char IER;
 unsigned char IIR_FCR;
 unsigned char LCR;
 unsigned char MCR;
 unsigned char LSR;
 unsigned char MSR;
 } *_UART = 0xC0000000;

 unsigned int
 put_char(char d) {
 while (!(_UART->LSR&0x20));
 _UART->RB_THR = d;
 return (unsigned int)d;
 }

 unsigned int
 get_char(void) {
 while (!(_UART->LSR&0x1));
 return (unsigned int)_UART->RB_THR;
 }

APB

interrupt

srx
stx

apb_uart

A
M

B
A

 b
u

s
 o

p
e

ra
ti
o

n
s

UART hardware

control routines

CSR

Software domain Hardware domain

PCLK

PSEL

PENABLE

PWRITE

PADDR

PWDATA

PRDATA Z

adr

dat_o

dat_i

we_o

re_o

Z

Write Read

A
M

B
A

 A
P

B
 P

ro
to

c
o
l

U
A

R
T

 r
e
g
 p

ro
to

c
o
l

Processor

0100000101

15

Copyright © 2013-2017 by Ando Ki UART verification (29)

Verification plan

The best way A novel way

processor

Memory

AMBA

AHB

ahb-to-apb

bridge

UART line driver TTY model bfm_apb UART TTY model

Copyright © 2013-2017 by Ando Ki UART verification (30)

APB BFM: module
`timescale 1ns/1ns

module bfm_apb_s1

#(parameter P_ADDR_START0 = 16'h0000, P_ADDR_SIZE0 = 16'h0010)

(

input wire PRESETn

, input wire PCLK

, output reg PSEL

, output reg [31:0] PADDR

, output reg PENABLE

, output reg PWRITE

, output reg [31:0] PWDATA

, input wire [31:0] PRDATA0

);

reg [31:0] freq;

real stamp_x, stamp_y, delta;

initial begin

PSEL = 1'b0;

PADDR = ~32'h0;

PENABLE = 1'b0;

PWRITE = 1'b0;

PWDATA = ~32'h0;

PPROT = 3'h0;

PSTRB = 4'h0;

wait (PRESETn==1'b0);

wait (PRESETn==1'b1);

@ (posedge PCLK);

@ (posedge PCLK); stamp_x = $time;

@ (posedge PCLK); stamp_y = $time; delta = stamp_y - stamp_x;

@ (negedge PCLK); $display("%m PCLK %f nsec %f Mhz", delta, 1000.0/delta);

freq = 1000000000/delta;

repeat (3) @ (posedge PCLK);

uart_test(freq, 115200);

repeat (5) @ (posedge PCLK);

$finish(2);

end

Calculate frequency

Call UART testing scenario

16

Copyright © 2013-2017 by Ando Ki UART verification (31)

APB BFM: module
integer err;

//--

task uart_test;

input [31:0] freq;

input [31:0] baud;

reg [7:0] dat;

integer idx;

begin

err = 0;

//--

init_uart(freq // input [31:0] frea;

, baud // input [31:0] baud

);

//--

for (idx="A"; idx<="Z"; idx = idx + 1) begin

send_a_character(idx[7:0]);

receive_a_character(dat);

if (dat>=8'h20&&dat<=8'h7E)

$display($time,,"%m 0x%x(%c) received!", dat, dat);

else

$display($time,,"%m 0x%x received!", dat);

if (idx[7:0]!==dat) begin

err = err + 1;

$display($time,,"%m ERROR 0x%x received, but 0x%x expected",

dat, idx[7:0]);

end

end

//--

if (err==0) $display($time,,"%m test OK");

end

endtask

//--

`include "bfm_apb_tasks_s1.v"

`include "uart_apb_tasks.v"

//--

endmodule

initialize UART

Send a character

Receive a character

APB bus tasks

UART handling tasks

Copyright © 2013-2017 by Ando Ki UART verification (32)

UART APB tasks
// U16550 CSR address

localparam RB_THR =0

, IER =4

, IIR_FCR =8

, LCR =12

, MCR =16

, LSR =20

, MSR =24;

//--

task init_uart;

input [31:0] freq;

input [31:0] baud;

reg [31:0] dl;

begin

dl = (freq/(16*baud))+0.5;

apb_write(LCR, 32'h83, 4);

apb_write(IER, {24'h0,dl[15:8]}, 4);

apb_write(RB_THR, {24'h0,dl[7:0]}, 4);

apb_write(LCR, 32'h03, 4);

apb_write(IIR_FCR,32'h01, 4);

apb_write(IER, 32'h01, 4);

end

endtask

//--

task send_a_character;

input [7:0] dat;

reg [31:0] tmp;

begin

apb_read(LSR, tmp, 4);

// wait until buffer empty

while (!(tmp&32'h20)) apb_read(LSR, tmp, 4);

apb_write(0, {24'h0,dat}, 4);

end

endtask

//--

initialize UART

//--

task receive_a_character;

output [7:0] dat;

reg [31:0] tmp;

begin

apb_read(LSR, tmp, 4);

// wait until a character recived

while (!(tmp&32'h01)) apb_read(LSR, tmp, 4);

apb_read(RB_THR, tmp, 4);

dat = tmp[7:0];

end

endtask

//--

Send a character
Receive a character

initialize

LCR[7] ß 1

end

CDRh ß MSB

CDRl ß LSB

LCR[7] ß 0

FCR ß 0x1

IEA ß 0x1

Receive a

character

Read LSR

LSR[0]==1

Read RB

return

No

Yes

 Send a

character

Read LSR

LSR[5]==1

Write THR

return

No

Yes

17

Copyright © 2013-2017 by Ando Ki UART verification (33)

BFM APB tasks
task apb_write;

input [31:0] addr;

input [31:0] data;

input [2:0] size;

begin

@ (posedge PCLK);

PADDR <= #1 addr;

PWRITE <= #1 1'b1;

PSEL <= #1 1'b1; //decoder(addr);

PWDATA <= #1 data;

PSTRB <= #1 get_pstrob(addr,size);

@ (posedge PCLK);

PENABLE <= #1 1'b1;

@ (posedge PCLK);

while (get_pready(addr)==1'b0) @ (posedge PCLK);

`ifndef LOW_POWER

PADDR <= #1 32'h0;

PWRITE <= #1 1'b0;

PWDATA <= #1 ~32'h0;

`endif

PSEL <= #1 1'b0;

PENABLE <= #1 1'b0;

if (get_pslverr(addr)==1'b1) $display($time,,"%m PSLVERR");

end

endtask

//--

//--

task apb_read;

input [31:0] addr;

output [31:0] data;

input [2:0] size;

begin

@ (posedge PCLK);

PADDR <= #1 addr;

PWRITE <= #1 1'b0;

PSEL <= #1 1'b1; //decoder(addr);

PSTRB <= #1 4'hF;

@ (posedge PCLK);

PENABLE <= #1 1'b1;

@ (posedge PCLK);

while (get_pready(addr)==1'b0) @ (posedge PCLK);

`ifndef LOW_POWER

PADDR <= #1 32'h0;

`endif

PSEL <= #1 1'b0;

PENABLE <= #1 1'b0;

if (get_pslverr(addr)==1'b1) $display($time,,"%m PSLVERR");

data = get_prdata(addr); // it should be blocking

end

endtask

//--

... ..

Copyright © 2013-2017 by Ando Ki UART verification (34)

TTY model
`timescale 1ns/1ns

module tty #(parameter BAUD_RATE = 115200, LOOPBACK=1)

(

output reg STX,

input wire SRX

);

//--

localparam INTERVAL = (1000000000/BAUD_RATE); // nsec

//--

reg [7:0] data = 0;

//--

initial begin STX = 1'b1; end

//--

always @ (negedge SRX) begin

receive(data);

$write("%c", data); $fflush();

if (LOOPBACK) send(data);

end

//--

task receive;

output [7:0] value;

integer x;

begin

value = 0;

#(INTERVAL*1.5);

for (x=0; x<8; x=x+1) begin // LSB comes first

value[x] = SRX;

#(INTERVAL);

end

end

endtask

//--

task send;

input [7:0] value;

integer y;

begin

STX = 1'b0;

#(INTERVAL);

for (y=0; y<8; y=y+1) begin // LSB goes first

STX = value[y];

#(INTERVAL);

end

STX = 1'b1;

#(INTERVAL);

end

endtask

//--

endmodule

0 0 0 0 0 0 1 0 11

stopstart

paritydata

Time

18

Copyright © 2013-2017 by Ando Ki UART verification (35)

Test-bench
`timescale 1ns/1ns

`ifndef CLK_FREQ

`define CLK_FREQ 50000000

`endif

module top ;

//--

reg PRESETn = 1'b0;

reg PCLK = 1'b0;

wire PSEL ;

... ...

//--

bfm_apb_s1

u_bfm_apb_s1 (

.PRESETn (PRESETn)

, .PCLK (PCLK)

, .PSEL (PSEL)

, .PADDR (PADDR)

, .PENABLE (PENABLE)

, .PWRITE (PWRITE)

, .PWDATA (PWDATA)

, .PRDATA0 (PRDATA)

`ifdef AMBA3

, .PREADY (PREADY)

, .PSLAVERR (PSLAVERR)

`endif

`ifdef AMBA4

, .PPROT (PPROT)

, .PSTRB (PSTRB)

`endif

);

//---

wire srx, stx;

uart_apb u_uart_apb (

.PRESETn (PRESETn)

, .PCLK (PCLK)

, .PSEL (PSEL)

, .PENABLE (PENABLE)

, .PADDR (PADDR)

, .PWRITE (PWRITE)

, .PRDATA (PRDATA)

, .PWDATA (PWDATA)

, .interrupt () // interrupt request (active-high)

, .srx (srx) // serial output

, .stx (stx) // serial input

);

//---

tty #(.BAUD_RATE(115200), .LOOPBACK(1))

u_tty (

.STX (srx)

, .SRX (stx)

);

//---

localparam CLK_FREQ=`CLK_FREQ;

localparam CLK_PERIOD_HALF=1000000000/(CLK_FREQ*2);

//---

always #CLK_PERIOD_HALF PCLK <= ~PCLK;

//---

... ...

endmodule

bfm_apb UART TTY model

Copyright © 2013-2017 by Ando Ki UART verification (36)

Simulation with ModelSim (1/4)
Makefile

SHELL = /bin/sh

MAKEFILE = Makefile

#--

VLIB = $(shell which vlib)

VLOG = $(shell which vlog)

VSIM = $(shell which vsim)

WORK = work

#--

TOP = top

#--

all: vlib compile simulate

vlib:

if [-d $(WORK)]; then /bin/rm -rf $(WORK); fi

$(VLIB) $(WORK)

compile:

$(VLOG) -lint -work $(WORK) -f modelsim.args

simulate: compile

$(VSIM) -novopt -c -do "run -all; quit" $(WORK).$(TOP)

Modelsim commands

@ECHO OFF

REM RunMe.bat

SET MODELSIMWORK=work

SET MODELSIMVLIB=vlib

SET MODELSIMVSIM=vsim

SET MODELSIMVCOM=vcom

SET MODELSIMVLOG=vlog

SET DESIGNTOP=top

IF EXIST %MODELSIMWORK% RMDIR /S/Q %MODELSIMWORK%

%MODELSIMVLIB% %MODELSIMWORK%

%MODELSIMVLOG% -work %MODELSIMWORK% -lint^

-f modelsim.args

%MODELSIMVSIM% -novopt -c -do "run -all; quit"^

%MODELSIMWORK%.%DESIGNTOP%

Specify where to store compile results

Compilation

Simulation

19

Copyright © 2013-2017 by Ando Ki UART verification (37)

Simulation with ModelSim (2/4)
//--

+incdir+../../design/verilog

./sim_define.v

../../design/verilog/bfm_apb_s1.v

../../design/verilog/uart_apb.v

//--

// Below are test-bench

//--

+incdir+../../bench/verilog

../../bench/verilog/top.v

../../bench/verilog/tty.v

//--

`ifndef _SIM_DEFINE_V_

`define _SIM_DEFNE_V_

//---

`define SIM // define this for simulation case if you are not sure

`define VCD // define this for VCD waveform dump

`define DEBUG

`define RIGOR

`define LOW_POWER

//---

`define CLK_FREQ 50000000

`define MEM_DELAY 0

//---

`endif

modelsim.args

sim_define.v

bfm_apb UART TTY model

Copyright © 2013-2017 by Ando Ki UART verification (38)

Simulation with ModelSim (3/4)

Compilation

Simulation according to the scenario

20

Copyright © 2013-2017 by Ando Ki UART verification (39)

Simulation with ModelSim (4/4)

TX by UART RX by UART (TX by TTY)

A

Copyright © 2013-2017 by Ando Ki UART verification (40)

Example: APB BFM task-based case

This example shows how to use BFM with tasks

Step 1: go to your project directory

[user@host] cd $(PROJECT)/codes/p2_uart_bfm_apb

Step 2: see the codes

[user@host] cd $(PROJECT)/codes/p2_uart_bfm_apb/desing/verilog

Step 3: compile and run

[user@host] cd $(PROJECT)/codes/p2_uart_bfm_apb/sim/modelsim

[user@host] make

Step 4: waveform view

[user@host] gtkwave wave.vcd &

[user@host] cd $(PROJECT)/codes/p2_uart_bfm_abp/sim/modelsim

[user@host] make
[user@host] gtkwave wave.vcd &

21

Copyright © 2013-2017 by Ando Ki UART verification (41)

Issues, project and quiz

How to use interrupt

How to implement parity in TTY model

Copyright © 2013-2017 by Ando Ki UART verification (42)

References

AMBA Specification, Rev 2.0, ARM Limited. (AMBA 2.0 APB)

AMBA™ 3 APB Protocol v1.0, IHI 0024B, ARM, 2004. (AMBA 3.0 APB 1.0)

AMBA® APB Protocol Version: 2.0, IHI 0024C (ID041610), ARM, 2010. (AMBA

4.0 APB 2.0)

Jacob Gorban, UART IP Core Specification, Aug. 11, 2002. (www.opencores.org)

