
1

Introduction to AMBA AHB

Ando Ki

(adki@future-ds.com)

2013 – 2017

Copyright © 2013-2017 by Ando Ki AMBA AHB (2)

AMBA buses

AMBA 4 AXI AMBA 3 AXI AMBA 2 AHB

an extension of AMBA 3 AXI

Burst length up to 256

Quality-of-service

Removal of lock transaction

Removal of write interleaving

channel architecture

registers slices

one address for burst up to 16

multiple outstanding bursts

out of order completion

data interleaving

low-power interface

burst transfers

pipelined operation

split transactions

single-cycle bus master handover

single-clock edge operation

multiple bus masters (up to 16)

two uni-directional 32-bit data

bus for read and write

2

Copyright © 2013-2017 by Ando Ki AMBA AHB (3)

AMBA 2 naming convention

All AMBA bus signals are named such that the first letter of the name indicates

which bus the signal is associated with.

H: AHB signal, e.g., HCLK.

P: APB signal, e.g., PCLK.

B: ASB signal, e.g., BCLK.

A: unidirectional signal between ASB bus master to the arbiter, e.g., AGNTx, AREQx.

D: unidirectional ASB decoder signal, e.g., DSELx.

A lower case ‘n’ at the end of the signal name indicates that the signal is active

low. Otherwise all signal names are always upper case.

E.g., HRESETn, PRESETn.

Test signals have a prefix ‘T’ regardless of the bus type.

Copyright © 2013-2017 by Ando Ki AMBA AHB (4)

AMBA AHB components

Master

Initiate read and write operations by

providing an address and control

information.

E.g., processor, DMA, DSP, ahb2ahb

bridge

Slave

Responds to a read or write operation

within a given address space range.

E.g., memory, ahb2apb bridge

Arbiter

Ensures that only one bus master at a

time is allowed to initiate data transfers.

Decoder

Decode the address of each transfer and

provide a select signal for the slave that is

involved in the transfer.

Etc.: Multiplexer, AHB2APB bridge,

AHB2AHB bridge

3

Copyright © 2013-2017 by Ando Ki AMBA AHB (5)

AMBA component connection

Master #1

Master #2

Slave #1

Slave #2

Slave #3

Arbiter Decoder
HBUSREQ1

HBUSREQ2
HGRANT1

HGRANT2

HMASTER[3:0]

HADDR[31:0]

HRDATA[31:0]

HSEL1

HSEL2

HSEL3

HADDR[31:0]

HWDATA[31:0]

Copyright © 2013-2017 by Ando Ki AMBA AHB (6)

AMBA address path

Master #1

Master #2

Slave #1

Slave #2

Slave #3

Arbiter Decoder
HBUSREQ1

HBUSREQ2
HGRANT1

HGRANT2

HMASTER[3:0]

HADDR[31:0]

HSEL1

HSEL2

HSEL3

HADDR[31:0]

4

Copyright © 2013-2017 by Ando Ki AMBA AHB (7)

AMBA data path (write)

Master #1

Master #2

Slave #1

Slave #2

Slave #3

Arbiter
HBUSREQ1

HBUSREQ2
HGRANT1

HGRANT2

HMASTER[3:0]

H
W

D
A
T
A
[3

1
:0

]

-1
T

Copyright © 2013-2017 by Ando Ki AMBA AHB (8)

AMBA data path (read)

Master #1

Master #2

Slave #1

Slave #2

Slave #3

Arbiter Decoder
HBUSREQ1

HBUSREQ2
HGRANT1

HGRANT2

HMASTER[3:0]

HADDR[31:0]

HRDATA[31:0]

HSEL1

HSEL2

HSEL3

HADDR[31:0]

5

Copyright © 2013-2017 by Ando Ki AMBA AHB (9)

Data transfers and arbitration

Basic data transfer with zero wait

Basic data transfer with wait states

Multiple transfers with overlapping

AHB master, slave, decoder

AHB2APB bridge

APB slave

AHB arbiter and signals

AHB arbitration without wait

AHB arbitration with wait

AHB arbitration: bus ownership

AHB arbitration: handover

Handover after split transfer

Handover after retry response

Handover after error response

Copyright © 2013-2017 by Ando Ki AMBA AHB (10)

Basic data transfer with zero wait

6

Copyright © 2013-2017 by Ando Ki AMBA AHB (11)

Basic data transfer with wait states

Must be stable while

wait states

May not be stable

while wait states

Copyright © 2013-2017 by Ando Ki AMBA AHB (12)

Multiple transfers with overlapping

Overlapping of

address and data

Extended by the

wait state of its

previous transfer

AHB slave needs to

check HREADY.

7

Copyright © 2013-2017 by Ando Ki AMBA AHB (13)

AHB master

Copyright © 2013-2017 by Ando Ki AMBA AHB (14)

AHB slave

HREADYin

Note that HREADY as an input.

8

Copyright © 2013-2017 by Ando Ki AMBA AHB (15)

AHB decoder

Copyright © 2013-2017 by Ando Ki AMBA AHB (16)

AHB arbiter

9

Copyright © 2013-2017 by Ando Ki AMBA AHB (17)

AHB arbiter signals

signal from to remarks

HBUSREQ[15:0] master arbiter

HGRANT[15:0] arbiter master

HLOCK[15:0] master arbiter

HMASTER[3:0] arbiter Mux, slave

HMASTERLOCK arbiter

HSPLIT[15:0] slave arbiter

HTRANS[1:0] master arbiter

HBURST[2:0] master arbiter

HRESP[1:0] slave arbiter

HREADY slave arbiter

Copyright © 2013-2017 by Ando Ki AMBA AHB (18)

AHB arbitration without wait

HREADY

‘HREADY’ for the previous

transfer, which enables the

current transfer to proceed.

Zero-Wait

state

10

Copyright © 2013-2017 by Ando Ki AMBA AHB (19)

AHB arbitration with wait

Wait state Wait state for the

previous transfer
Wait state

Copyright © 2013-2017 by Ando Ki AMBA AHB (20)

AHB arbitration: bus ownership

Master2 owns add &

data buses

11

Copyright © 2013-2017 by Ando Ki AMBA AHB (21)

AHB arbitration: handover

Arbiter changes

winner at the one

before last transfer. Address of the last

transfer.
Data of the last

transfer.

Need delayed

HMASTER[3:0]

Copyright © 2013-2017 by Ando Ki AMBA AHB (22)

Handover after split transfer

Two-cycle

split response

12

Copyright © 2013-2017 by Ando Ki AMBA AHB (23)

Handover after retry response

Two-cycle

retry response

HGRANT

Arbiter
change
grant

cancel

following transfer

Copyright © 2013-2017 by Ando Ki AMBA AHB (24)

Handover after error response

Two-cycle

error response

Arbiter
may change

grant
HGRANT

13

Copyright © 2013-2017 by Ando Ki

Why slave should check HREADY

Slave Y needs to know when Slave

X ends its transfer, by watching ‘HRE

ADY’.

When ‘HREADY’ is 1, Slave Y knows

Slave X completes its transfer.

AMBA AHB (25)

HCLK

HADDR

HWRITE

HWDATA

HRDATA_X

HREADY_X

HRESP_X

AHB controls

HSEL_X

A1

C1

DW1

OK1

HRDATA_Y

HREADY_Y

HRESP_Y

HSEL_Y

OK2

A2

C2

A3

HREADY_Y

DR1

DR2

DW2

Slave Y can drive its results

Copyright © 2013-2017 by Ando Ki

Why arbiter should check HREADY

AMBA AHB (26)

HGRANT de-asserted earlier than

it should be.

P1_HADDR[] should drive more

cycles due to ‘HREADY’ is low.

To prevent this problem, arbiter needs to check HREADY before it de-asserts HGRANT.

14

Copyright © 2013-2017 by Ando Ki AMBA AHB (27)

Data transfers in details

Transfer direction and size

Transfer types

Burst operation

Why wrapping burst is defined

Early termination

Protection control

Slave transfer responses

Two-cycle response

Multi-byte endianness

Copyright © 2013-2017 by Ando Ki AMBA AHB (28)

Transfer direction and size

HWRITE

1'b1 (high): write transfer

1'b0 (low): read transfer

HSIZE[2:0] indicates the size of transfer

in as beat

HWDATA[...] and HRDATA[...]

AMBA

AHB

master

HBUSREQ

HGRANT

HADDR[31:0]

HTRANS[1:0]

HSIZE[2:0]

HBURST[2:0]

HWRITE

HWDATA[31:0]

HRDATA[31:0]

HRESP[1:0]

HREADY

HPROT[3:0]

HCLK

HRESETn

HLOCK

HSEL

HADDR[31:0]

HSIZE[2:0]

HBURST[2:0]

HWRITE

HWDATA[31:0]

HRDATA[31:0]

HRESP[1:0]

HREADYout

HREADYin

HTRANS[1:0]

HPROT[3:0]

AMBA

AHB

slave

HCLK

HRESETn

WRITE

READ

15

Copyright © 2013-2017 by Ando Ki AMBA AHB (29)

Transfer types

AHB master informs a type of transfer

through 'HTRANS'.

AMBA

AHB

master

HBUSREQ

HGRANT

HADDR[31:0]

HTRANS[1:0]

HSIZE[2:0]

HBURST[2:0]

HWRITE

HWDATA[31:0]

HRDATA[31:0]

HRESP[1:0]

HREADY

HPROT[3:0]

HCLK

HRESETn

HLOCK

HSEL

HADDR[31:0]

HSIZE[2:0]

HBURST[2:0]

HWRITE

HWDATA[31:0]

HRDATA[31:0]

HRESP[1:0]

HREADYout

HREADYin

HTRANS[1:0]

HPROT[3:0]

AMBA

AHB

slave

HCLK

HRESETn

Copyright © 2013-2017 by Ando Ki AMBA AHB (30)

Transfer types

a transfer

accessing

resources starting

from 0x20

'NOSEQ' transfer

type indicates it is

the first access of a

transfer.

'BUSY' means the master cannot perform

transaction due to some reasons. As a

result, the selected slave should wait or

ignore this cycle.

Low state of 'HREAY' means the selected

slave cannot perform transaction due to

some reasons. As a result, the master

should wait or ignore this cycle.

This is not valid due

to 'BUSY' for the

case of write.

This is not valid due

to 'HREADY' for the

case of read.

16

Copyright © 2013-2017 by Ando Ki AMBA AHB (31)

Burst operation

1, 4, 8 and 16-beat bursts are defined in

AMBA AHB.

Beat means a single cycle of data transfer.

Note that bust size does not indicates the

number of bytes.

Incremental and wrapping bursts are defined.

Burst must not cross a 1Kbyte address

boundary

The minimum address space that can be allocat

ed to a single slave is 1kB.

(AXI spec. requires 4Kbyte boundary for burst)

All transfers within a burst must be aligned to

the address boundary equal to the size of the

transfer. For example, word transfers must be

aligned to word address boundaries (that is

A[1:0] = 00), halfword transfers must be

aligned to halfword address boundaries (that

is A[0] = 0).

AMBA

AHB

master

HBUSREQ

HGRANT

HADDR[31:0]

HTRANS[1:0]

HSIZE[2:0]

HBURST[2:0]

HWRITE

HWDATA[31:0]

HRDATA[31:0]

HRESP[1:0]

HREADY

HPROT[3:0]

HCLK

HRESETn

HLOCK

HSEL

HADDR[31:0]

HSIZE[2:0]

HBURST[2:0]

HWRITE

HWDATA[31:0]

HRDATA[31:0]

HRESP[1:0]

HREADYout

HREADYin

HTRANS[1:0]

HPROT[3:0]

AMBA

AHB

slave

HCLK

HRESETn

Copyright © 2013-2017 by Ando Ki AMBA AHB (32)

Four-beat incrementing burst

4-beat incremental (HBURST=3'b011)

with word size (HSIZE=3'b010) starting

from A

A, A+4, A+8, A+12

4-beat incremental (HBURST=3'b011)

with byte size (HSIZE=3'b000) starting

from A

A, A+1, A+2, A+3

17

Copyright © 2013-2017 by Ando Ki AMBA AHB (33)

Four-beat wrapping burst

a four-beat wrapping burst of word (4-

byte) accesses will wrap at 16-byte

boundaries.

4-beat x 4-byte/word = 16-byte boundary

Copyright © 2013-2017 by Ando Ki AMBA AHB (34)

Eight-beat incrementing burst

8-beat incremental (HBURST=3'b101)

with half-word size (i.e., 2-byte,

HSIZE=3'b001) starting from A

A, A+2, A+4, A+6, A+8, A+10, A+12, A+14

18

Copyright © 2013-2017 by Ando Ki AMBA AHB (35)

Undefined-length bursts

Two half-word (two 2-byte) transfer

starting 0x20

Three word (three 4-byte) transfer

starting 0x5C

Copyright © 2013-2017 by Ando Ki AMBA AHB (36)

Why wrapping burst is defined?

Processor

P
ro

c
e

s
s
o

r

lo
c
a

l
b

u
s

S
y
s
te

m
 b

u
s

MemoryCache

re
g

is
te

r

m
e

m
o

ry

w
o

rd
 0

m
e

m
o

ry

w
o

rd
1

m
e

m
o

ry

w
o

rd
 2

m
e

m
o

ry

w
o

rd
 3

c
a

c
h

e

w
o

rd
 0

c
a

c
h

e

w
o

rd
 1

c
a

c
h

e

w
o

rd
 2

c
a

c
h

e

w
o

rd
 3

c
a

c
h

e
 l
in

e

critical word
first

Cache miss can be resolved more faster

by filling the critical world first.

This requires wrapping burst access

through system bus.

Does critical word first policy always give

a better result than sequential cache

miss refill policy?

Think of burst-oriented memory, e.g.,

DDR, DDR2, DDR3

cache word 1 cache word 2 cache word 3 cache word 0

address

wrapping burst access

19

Copyright © 2013-2017 by Ando Ki AMBA AHB (37)

Early termination

A fixed beat transfer should start with

'NON-SEQ' beat and be followed pre-

defined 'SEQ' beats with 'BUSY' if

required.

When bus master cannot continue a

complete burst transfer, it can drop the

transfer at any cycles.

Thus, bus slave should be capable to

determine an early termination by

detecting 'NON-SEQ' beat in the middle of

a transfer.

Then, bus slave ends the early terminated

transfer and starts the new transfer.

Copyright © 2013-2017 by Ando Ki AMBA AHB (38)

Protection control

More information about transfer can give

more opportunity to optimize access

related issues.

Op-code fetch means there will be no

write on this access.

AMBA

AHB

master

HBUSREQ

HGRANT

HADDR[31:0]

HTRANS[1:0]

HSIZE[2:0]

HBURST[2:0]

HWRITE

HWDATA[31:0]

HRDATA[31:0]

HRESP[1:0]

HREADY

HPROT[3:0]

HCLK

HRESETn

HLOCK

HSEL

HADDR[31:0]

HSIZE[2:0]

HBURST[2:0]

HWRITE

HWDATA[31:0]

HRDATA[31:0]

HRESP[1:0]

HREADYout

HREADYin

HTRANS[1:0]

HPROT[3:0]

AMBA

AHB

slave

HCLK

HRESETn

The master sets HPROT to 0b0011 to correspond to a Non-cacheable, Non-bufferable, privileged, data access.

Slaves do not use HPROT unless absolutely necessary.

20

Copyright © 2013-2017 by Ando Ki AMBA AHB (39)

Slave transfer responses

After a master has started a transfer, the

slave then determines how the transfer

should progress. No provision is made

within the AHB specification for a bus

master to cancel a transfer once it has

commenced.

There is no way to cancel transfer by

master.

The SPLIT and RETRY responses

provide a mechanism for slaves to

release the bus when they are unable to

supply data for a transfer immediately.

Both mechanisms allow the transfer to

finish on the bus and therefore allow a

higher-priority master to get access to

the bus.

Copyright © 2013-2017 by Ando Ki AMBA AHB (40)

Two-cycle response

Only an OKAY response can be given in a

single cycle. The ERROR, SPLIT and RETRY

responses require at least two cycles

By driving one more ‘RETRY/ERROR/SPLIT’

respond before actual response, the master

can put ‘IDLE’ cycle before starting the next

cycle.

This ‘IDLE’ cycle will be cancelled due to

‘RETRY/ERROR/SPLIT’.

When the slave needs more than two cycles

to respond ‘RETRY/ERROR/SPLIT’, it puts

‘OKAY’ respond with ‘HREADY’ is low before

two-cycle response.

Two-cycle

split response

RETRY RETRY

21

Copyright © 2013-2017 by Ando Ki

Retry and split

The SPLIT and RETRY responses provide a mechanism for slaves to release the bus

when they are unable to supply data for a transfer immediately.

Both mechanisms allow the transfer to finish on the bus and therefore allow a higher-priority

master to get access to the bus.

RETRY

the arbiter will continue to use the normal priority scheme

thus, higher priority master can gain the bus.

슬레이브가 RETRY 응답을하면, master는전송을재시도하고, 중재기는원래중재방식으로
중재한다. 즉, retry 한것을포함하여최고우선순위가다시버스를사용한다.

SPLIT

the arbiter adjust priority by using information from slave through HSPLIT[15:0].

SPLIT 응답을받은마스터는 retry한다. 다만중재기가 HSPLIT이올때까지중재에서배제하고,

HSPLIT가오면우선순위에무관하게먼저버스사용을허락한다.

A bus master should treat SPLIT and RETRY in the same manner. It should continue to

request the bus and attempt the transfer until it has either completed successfully or been

terminated with an ERROR response.

AMBA AHB (41)

Copyright © 2013-2017 by Ando Ki

Split

AMBA AHB (42)

Master

Arbiter

Slave

(1) HBUSREQ

(2) HSPLIT[..]
retry

Master

Arbiter

Slave

(1) HBUSREQ

(2) HGRANT

(3) AHB

(2) HMASTER[..]

(4) HREADY & HRESP=SPLIT

Master

Arbiter

Slave

(3) HGRANT

(4) AHB

(5) HREADY & HRESP=OK

22

Copyright © 2013-2017 by Ando Ki AMBA AHB (43)

Multi-byte endianness

Little-endian data bus for 32-bit case Big-endian data bus for 32-bit case

Word-invariance scheme (BE32)

32-bit register

MSB

31 0

3

2

1

0

Memory

little-endian

big-endian

Copyright © 2013-2017 by Ando Ki AMBA AHB (44)

AMBA bus systems

AMBA AHB bus system

AMBA AHB-Lite

Multi-layer AHB

23

Copyright © 2013-2017 by Ando Ki AMBA AHB (45)

AMBA AHB bus system

Master #1

Master #2

Slave #1

Slave #2

Slave #3

Arbiter Decoder
HBUSREQ1

HBUSREQ2
HGRANT1

HGRANT2

HMASTER[3:0]

HADDR[31:0]

HRDATA[31:0]

HSEL1

HSEL2

HSEL3

HADDR[31:0]

HWDATA[31:0]

Copyright © 2013-2017 by Ando Ki AMBA AHB (46)

AMBA AHB-Lite

AHB-Lite is a subset of the full AHB specification, where only a single AHB

master is used.

A single master  No master-to-slave multiplexor

No request/grant protocol to the arbiter  No arbiter

No split/retry responses from slaves

24

Copyright © 2013-2017 by Ando Ki AMBA AHB (47)

Multi-layer AHB

Multi-layer AHB is an interconnection scheme, based on the AHB protocol, that

enables parallel access paths between multiple masters and slaves in a system.

Standard AHB master and slave modules can be used without modification.

Bus contention can be avoided.

Copyright © 2013-2017 by Ando Ki AMBA AHB (48)

Issues and quiz

How to deal with accesses to non-

existent locations

How to deal with bus grant for no

requesting

Q1: How does master postpone cycle(s)

of transfer?

How to make slave wait by the master?

Q2: How does slave postpone cycle(s) of

transfer?

How to make master wait by the slave?

Q3: Why slave needs to see HREADY?

25

Copyright © 2013-2017 by Ando Ki AMBA AHB (49)

References

ARM, AMBA Specification, Chapter 3 AMBA AHB, ARM IHI 0011A, 1999.

ARM, AMBA3 AHB-Lite Protocol Specification, v1.0, ARM IHI 0033A, 2006.

ARM, Multi-layer AHB Overview, ARM DVI 0045B, 2004.

ARM, AMBA 5 AHB Protocol Specification, AHB5, AHB-Lite, ARM IHI 0033B,

2015.

