Introduction to AMBA AHB

2013 - 2017

Ando Ki

(adki@future-ds.com)

AMBA buses

AMBA 4 AXI

AMBA 3 AXI

AMBA 2 AHB

an extension of AMBA 3 AXI
Burst length up to 256
Quality-of-service

Removal of lock transaction
Removal of write interleaving

channel architecture

registers slices

one address for burst up to 16
multiple outstanding bursts
out of order completion

data interleaving

low-power interface

burst transfers

pipelined operation

split transactions

single-cycle bus master handover
single-clock edge operation
multiple bus masters (up to 16)

two uni-directional 32-bit data
bus for read and write

Copyright © 2013-2017 by Ando Ki

AMBA AHB (2)

AMBA 2 naming convention

& All AMBA bus signals are named such that the first letter of the name indicates
which bus the signal is associated with.
+ H: AHB signal, e.g., HCLK.
+ P: APB signal, e.g., PCLK.
+ B: ASB signal, e.g., BCLK.
<+ A: unidirectional signal between ASB bus master to the arbiter, e.g., AGNTX, AREQxX.
<+ D: unidirectional ASB decoder signal, e.g., DSELx.
&= A lower case ‘n’ at the end of the signal name indicates that the signal is active
low. Otherwise all signal names are always upper case.
+ E.g., HRESETn, PRESETN.

& Test signals have a prefix ‘T’ regardless of the bus type.

Copyright © 2013-2017 by Ando Ki AMBA AHB (3)

AMBA AHB components

= Master
+ Initiate read and write operations by
providing an address and control
information.

+ E.g., processor, DMA, DSP, ahb2ahb
bridge

Arbiter

HADDR

&= Slave
. . Master
+ Responds to a read or write operation #1

HWDATA Slave
#1

HRDATA

within a given address space range.

HWDATA Slave

+ E.g., memory, ahb2apb bridge Mastor | vavonta - | Tomomn| 2
5 Arbiter #2 p— —| ‘control mux \\I r
HADDR
+ Ensures that only one bus master at a HaDDR | | awoara | siave

time is allowed to initiate data transfers. Master Lwoara | [el mu | [moara | #3

Read data mux

HRDATA
= Decoder

HWDATA Slave

+ Decode the address of each transfer and 4

provide a select signal for the slave that is

involved in the transfer.

& Etc.: Multiplexer, AHB2APB bridge,
AHB2AHB bridge

Copyright © 2013-2017 by Ando Ki AMBA AHB (4)

AMBA component connection

Arbiter Decoder
HBUSREQI
HMASTER[3:0] | A rapoR[31:0]
HADDR/[31:0] u|
»

Master #1 <€ —> Slave #1

YY

1 HSEL1
| —

> HWPATA/31 9[_3

- Slave #2 |«

»| Master #2 > HSEL2
$

AROATAGET | [3 Slave #3 |«

< HSEL3
~—
Copyright © 2013-2017 by Ando Ki AMBA AHB (5)

AMBA address path

HGRANTZ

HGRANT1 Arbiter Decoder
HBUSREQ1

HMASTER[3:0] JADDR[31:0]
A
Master #1 ~ 1>
_)) waoorszo) 7| Slave #1
HSEL

»| Master #2 Havels HSELZ
> Slave #3 |«
HSEL3

Copyright © 2013-2017 by Ando Ki AMBA AHB (6)

AMBA data path (write)

HGRANTZ.

HEUSREQ? .
HGRANTI Arbiter

| HMASTER[3.0] |

Master #1 -1
aste T »| Slave #1
>
P Slave #2
»| Master #2 —)) ”
g
g
T
P Slave #3
Copyright © 2013-2017 by Ando Ki AMBA AHB (7)
AMBA data path (read)
HGRANT2
—— > Arbiter Decoder
HBUSREQI
HMASTER[3:0] A AUT
Master #1 borso Slave #1 <
Slave #2 |«
»| Master #2 HSEL2
<
<
HRDATA[31:0] D Slave #3 |«
< HSEL3

Copyright © 2013-2017 by Ando Ki AMBA AHB (8)

Data transfers and arbitration

= Basic data transfer with zero wait
& Basic data transfer with wait states
& Multiple transfers with overlapping
= AHB master, slave, decoder

= AHB2APB bridge

= APB slave

& AHB arbiter and signals

= AHB arbitration without wait

= AHB arbitration with wait

B AHB arbitration: bus ownership

= AHB arbitration: handover

& Handover after split transfer

= Handover after retry response

= Handover after error response

Copyright © 2013-2017 by Ando Ki AMBA AHB (9)

Basic data transfer with zero wait

Address phase Data phase

HCLK | |

HADDR[31:0] :)Oq A IX:X
Gontrol :X:N Control DO(
HWDATA[31:0] 7}0(X M I:('it)a
HREADY :x ¥ L/
HRDATA[31:0] _XX X

Data
(A)

SARRR |

Copyright © 2013-2017 by Ando Ki AMBA AHB (10)

Basic data transfer with wait states

| Address phase Data phase

HCLK

HADDR[31:0] X:M A
[—

Control X:M Control
HWDATA[31:0] X:X
HREADY X:X

HRDATA[31:0]

Shele

Data

/ & |

A /7
X0 =]

LT
L

SARRR

Must be stable while ‘ ‘ May not be stable ‘
wait states while wait states

Copyright © 2013-2017 by Ando Ki AMBA AHB (11)

Multiple transfers with overlapping

3 wait state of its
HELK | | | . pl'GV‘OUS transfer

HADDR{31:0] X:X I IX] & X:X
Cantral Gontral [Canfral
(B) (C)

Extended by the }

|
ohe

Cantral [A)
Dala Dala
(B} cy

N

A v (&) ()

HWDATA[21 :0]

HREADY ! ‘I'
HROATA[21:0] X:X

lijl
&
SARRR

AHB slave needs to
check HREADY.

Overlapping of
address and data

Copyright © 2013-2017 by Ando Ki AMBA AHB (12)

AHB master

HCLK
HBUSREQx __; n
Tovreq -~ Tohreq
HLOCKx __ i
Tovkc o
HGRANTx '&
H _ _ | fa=Tingnt
week [L[LT L
HTRANS[1:0] D rovs=a [YY 1Y
HBUSREQx Towr] e | ey
Arbiter
HLOCKx .
Arbiter HORANTx | e HADDR[31:0]) 4 Yy
grant A I
[HIRANS[1:0]_, Transfer type HSIZE[2:0] “ Coa “ “
HREADY HBURST([2:0]
Transfer HADDRB1™ HPROT[3:0] ™ > ™=] t—Tohal
response HRESP[1:0] | [31:0]]
AHB HWDATA[31:0] X b ¥Y
HWRITE
Reset HRESETn | master |HWRITE :ﬁgress Toved o] fa-] b Tohwet
HSIZE[2:0]
Clock Heix HEEEOy [Control HReapy Y it I i
E— HBURST[2:0] ; -—I | iy
iarcy =
HPROT[3:0]
HRESP[1:0] X Yoo o Yo TIY
s
Data HWDATA[31:01> Data Tiskp L e
HRDATA[31:0] 10 b Y =Y
N
Copyright © 2013-2017 by Ando Ki AMBA AHB (13)
Select HSELx Note that HREADY as an input.
HADDR[31:0] HREADYin /
Address HWRITE
and HREADY —
sontrol HTRANS[1:0 = week LT 1|
HSIZET2:0 AHB HRESP[1:0 Transfer
_u—. slave response HSELx
HBURST[2:0] S -+ firest -
H IONESEQ
Data HWDATA[21:0] HRDATA[21:0] Data HTRANS[1:0) Ll mon _.Il_]_rm Lt
Tistr = P
Reset HRESETn . HADDR[31:0] 0 Yy i
H A
Clock HCLK . *‘ g i ke
Tisa P
HMASTER[3:0], i HWRITE
Split ‘c:apable HSPLITx[15:0] HSIZE[2:0] T e XY)
HMASTLOCK | siave HBURST([2:0]) g g ey
Tisctl — j—
HWDATA[31:0] J § 1 L I
Tiswd *bTﬁm
HREADY 1 I H
Tovrcy —s |a— - Tohedy
HRESP[1:0] 1 | T
Towrep — b] faTonesp
HRDATA[31:0] j§ X
] f—Towa
Towd —in L—

Copyright © 2013-2017 by Ando Ki

AMBA AHB (14)

AHB decoder

s

HSELx1
AHB HSELx2 Select
decoder HSELx3

wok — L LT

HADDR

HSELx

Copyright © 2013-2017 by Ando Ki

AMBA AHB (15)

AHB arbiter

HBUSREQx1
HLOCKx1

HBUSREQx2 _

HLOCKx2 »

HBUSREQxS

HLOCKx3 »

HADDR[31:0]

HSPLITx[15:0]
HTRANS[1:0]
HBURSTI2:0]
HRESP[1:0 .

HREADY »

Arbiter
requests
and locks

Address
and control

Reset HRESETn

Clock HCLK

—_——

Copyright © 2013-2017 by Ando Ki

[HGRANTX1
[HGRANTx2 Arbiter
grants
[HGRANTX3
AHEBE
arbiter HMASTER| HCLK ,_l_,_|_
HMASTLOCK , HBUSREQx f] i é
- Tiweq
Tiareq -
HLOCKx f I
- Tihick
Tk — | nal
HSPLITx[15:0]) H X
_ __.I *‘l_emaw
HGRANTx I 'E__
Tovont - pe— . Tohgnt
HMASTER[3:0] 0 1 4
Tovmast —e| | f—Tohimast
HMASTLOCK | -E_
Towmick e ba— - Tohmick

AMBA AHB (16)

AHB arbiter signals

signal from to remarks
HBUSREQ[15:0] master | arbiter
HGRANT[15:0] arbiter master
HLOCK][15:0] master | arbiter
HMASTER[3:0] arbiter Mux, slave
HMASTERLOCK arbiter
HSPLIT[15:0] slave arbiter
HTRANS[1:0] master | arbiter
HBURST[2:0] master | arbiter
HRESP[1:0] slave arbiter
HREADY slave arbiter
Copyright © 2013-2017 by Ando Ki AMBA AHB (17)

AHB arbitration without wait

™ T2 T3 T4 T5 T6

HCLK] | |

'

HGRANTx [T

2
O

HBUSREQx __|ff

0O
X

HMASTER[3:0]

HADDR[31:0]

[- R R 1]

HWDATA[31:0] \
.
HREADY
‘HREADY’ for the previous Zero-Wait
transfer, which enables the state

current transfer to proceed.

Copyright © 2013-2017 by Ando Ki AMBA AHB (18)

AHB arbitration with wait

T‘Mamr asseﬂsu Anumuelc;r!scyc\es lawr T TSMasbeldrwes ;Emass after uamTT Addrass saur.:&led and data T
request » arbiter asqerts grant &RMTand HREADY are nin " stans when HREADY high
ek L L L L L L L L
Fr FanY
HBUSREGx __ |ff hd T\
HGRANTX M N \
HMASTER[3:0] E N 7 =
o /
HADDRI[31:0] jod 4 14 A - 4 4 |
4 AN A
HWDATA[31:0] o i Y EETYE) ¢ |
o N
HREADY pd 0 S 7 e
ait state for the .
. Wait state
previous transfer
Copyright © 2013-2017 by Ando Ki AMBA AHB (19)
AHB arbitration: bus ownership
m™ T2 T3 T4 T5 Te Tr T8 Ta
week [L L [T I
HGRANT_M1 T4
o)
HGRANT_M2 I
HMASTER i M ¥

Master 1 owns sddress and Confro

Master 2 owns fddress and Confro

/
PN ngnSEG L SEQ xx_
AN
HADDR[31:0] 1 +8 11 A+ 12 1) |e 1 B+a X
e
X

HTRANS[31:0] ::H o) 1 = X

Master 1 pwns Dala Master 2 bwns Dala

HREADY 1
B X & X

/e VO
N O S) |

¥

HWDATA[31:0] i |

Master2 owns add &
data buses

Copyright © 2013-2017 by Ando Ki AMBA AHB (20)

AHB arbitration: handover

T T2 T3 T4 Ts T6 T T8 Ta
ek L L L L7 I
HBUSREQ M1 __|[f Need delayed
HBUSREQ_M2 [T HMASTER[3:0]
HGRANT M1 __ | ff ;\\
HGRANT_M2 (U
HMASTER[3:0] b W Q) 4P #
HTRAN[1:0] i X nons sco () see [XX bEa \\ ¥ / XX
N
HADDR[31:0] H L A O s XX 2+ XX 41 N\ \ X
HBURST([2:0] \ \
H!%é‘rg} 1) 2 b4 | Convol for burbt) /) \\ 1
; X XX s = e X 5 %}t M P XX
Arbiter changs q—e
winner at thE‘oﬁa v \ v 1 o/ s

before last transfer.) Address of the last ‘ ‘ Data of the last
transfer.

transfer.

Copyright © 2013-2017 by Ando Ki AMBA AHB (21)

Handover after split transfer

Slave S Arbiter %, Mew master

signals i changes : drives
T T2 split T5% grant T4 address 15
HCLK | | | |
HGRANT A\

o

<]

HTRAN[1:0] :XX NONSEQ XX SEQ E * x NONSEQ
HADDR[21:0] _XX A XX A xx B
HBURST[2:0]7 |

Hsvg;fggjo(N EE

HPROT[3:0]

HREADY /7 W\ \l/ 7 \

HRESP[1:0] _)CX_ seLl] sPUT OKAY,

Two-cycle
split response

X
X
X
W
N

Copyright © 2013-2017 by Ando Ki AMBA AHB (22)

Handover after retry response

HGRANT T\ grant

HCLK | | | 1

SEQ ﬁ' IDLE C)XX NONSEO:

T

HTRANS[1:0] NONSEQ

|
2o 25
g2 2
5
<2

HADDR([31:0]

Eji?

HWDATA[31:0]

i

HREADY \\ \//
HRESP[1:0] X Xrerd pRETR Y Yok
I J. |
Two-cycle | cancel
retry response following transfer
Copyright © 2013-2017 by Ando Ki AMBA AHB (23)

Handover after error response

" Arbiter

HGRANT ; j
HCLK | | | |
HADDR[31:0])O(A)O()OC
Control (o XX Y
HWDATA[31:0] X:X)O(Oy X:X:
HREADY XX 1\ A 7 L
HRESP[31:0] X X Y o eRRQ) errorl Y
HRDATA[31:0] XX X XX | X XX
i Two-cycle i

error response

Copyright © 2013-2017 by Ando Ki AMBA AHB (24)

Why slave should check HREADY

rninlininipininlin
HADDR | (AL (A2 A3
HWRITE |
AHB controls : Cl){ C2
HWDATA DWL W2
HREADY_Y
HSELX /|
HREADY_X
HRESP_X OK1,
HRDATA_X DRI
HSEL_Y o
HREADY_Y # Slave Y needs to know when Slave
HRESP_Y oz X ends its transfer, by watching ‘HRE
HRDATA_Y DR | ADY’.
S|avg Y can drive its results + When ‘HREADY' is 1, Slave Y knows
Slave X completes its transfer.
Copyright © 2013-2017 by Ando Ki AMBA AHB (25)

Signals

Why arbiter should check HREADY

Waves:

asserted earlier than

$PL_HADDRYJ] should drive more
—————

cycles due to ‘HREADY is low.

To prevent this problem, arbiter needs to check HREADY before it de-asserts HGRANT.

Copyright © 2013-2017 by Ando Ki AMBA AHB (26)

Data transfers in details

& Transfer direction and size

& Transfer types

& Burst operation

& Why wrapping burst is defined
= Early termination

& Protection control

& Slave transfer responses

= Two-cycle response

& Multi-byte endianness

Copyright © 2013-2017 by Ando Ki

AMBA AHB (27)

= HWRITE
<+ 1'b1 (high): write transfer
<+ 1'b0 (low): read transfer

=

Copyright © 2013-2017 by Ando Ki

Transfer direction and size

= HSIZE[2:0] indicates the size of transfer
in as beat

+ HWDATA[...] and HRDATA...]

l¢——— HRESETn HRESETn ~ ———»
le——— HCLK HCLK |
> HBUSRE() o
Q HSIZE[2] HSIZE[1] HSIZE[0] Size Description
l———— HGRANT HSEL |
[> HLock 0 [0 S bits Byte
|——> HPROT[3:0] HPROT[3:0] ———»
AMBA |——> HTRANS[L0] HTRANS[1:0] ———>] 0 0 1 16 bits Halfword
AMBA
AHB [——> HADDR[31:0] HADDR(3L0] ——— © 1 o 1 0 32 bits Word
master L » HWRITE HWRITE —
slave
> HSIZE[2:0] HSIZE[20] ——> 0 1 1 64 bits -
|——> HBURST[2:0] HBURST[2:0] ——»] 1 0) 128 bits 4-word line
> HWDATA[3L:0] HWDATA[31:0] ——»|
e« HRDATA[31:0] HRDATA[31:0] «——] 1 0 1 256 bits 8-word line
l————— HRESP[L0] HRESP[1:0] <——— -
o) ol 1 1 0 512 bits -
l«——— HREADY HREADYout ~ <«———
HREADYin ~ ———> 1 1 1 1024 bits -

AMBA AHB (28)

Transfer types

HTRANS[1:0] Type

Description

Tndicates that no data transfer is required. The IDLE transfer type is used when a bus
master is granted the bus, but does not wish fo pesform a data transfer.

Staves must afways provide a zero wait state OKAY response fo IDLE transfers and the
transfer should be ignored by the stave.

The BUSY transfer type allows bus masters to insert IDLE cycles in the middle of bussts
of transfers. This transfer type indicates that the bus master is confiming with a burst of
transfers, but the next transfer canot take place immediately. When a master uses the
BUSY transfer type the address and control signals must reflect the next transfer in the

The transfer should be ignored by the slave. Slaves must always provide a zero wait state
OKAY response. in the same way that they respond to IDLE transfers

Indicates the first transfer of a burst or a single transfer. The address and control signals
are unrelated to the previous transfer

Single transfers on the bus are treated as bursts of one and therefore the transfer type is
NONSEQUENTIAL.

00 IDLE
01 BUSY
burst.
10 NONSEQ
11 SEQ

‘The remaining trasfers in a burst are SEQUENTIAL and the address is related to the
previous transfer. The control information s identical to the previous transfer. The
address is equal to the address of the previous transfer pius the size (in bytes). In the.
case of a wrapping burst the address of the transfer wraps at the address boundary equal
to the size (in bytes) multiplied by the mumber of beats in the transfer (cither 4. § or 16).

Copyright © 2013-2017 by Ando Ki

through

e HRESETn
le——— HeLk
|——> HBUSREQ
l———— HGRANT
——> HLOCK
> HPROT[3:0]

AMBA |——> HTRANS[L0]
AHB |———> HADDR[31:0]
master | » HWRITE

|——> HsIzE[2:0]
|——> HBURST[2:0]

le———— HRESP[L:0]
l«——— HREADY

AMBA AHB (29)

> HWDATA[3L:0]
l———— HRDATA[31.0]

HRESETn
HCLK

HSEL

HPROT[3:0]
HTRANSI[1:0]
HADDR(31:0]
HWRITE
HSIZE[2:0]
HBURST[2:0]

HRESP[1:0]
HREADYout
HREADYin

HWDATA[31:0]
HRDATA[3L:0]

1 AHB master informs a type of transfer
'HTRANS'.

AMBA
AHB
slave

Transfer types

'BUSY' means the master cannot perform

transaction due to some reasons. As a

result, the selected slave should wait or

'NOSEQ' transfer
type indicates it is

the first access of a W = *
transfer.
HCLK | 1|

HTRANS[1:0] _:X}(NoNssz:X Bulsy X}(seq
a transfer E—
accessing HADDR[31:01 R o [} war [} o
resources starting _
from 0x20 neursTzzo} (Y WeR

ignore this cycle.

-
XX
XX

Hwoatapat:o] |\

XX

i [

(028) 02C)

HREADY | V

HRDATA[31:0] |

case of write.

This is not valid due
to 'BUSY" for the

This is not valid due
to 'HREADY" for the
case of read.

Copyright © 2013-2017 by Ando Ki

AMBA AHB (30)

=SEAEEsR

Low state of 'HREAY' means the selected
slave cannot perform transaction due to
some reasons. As a result, the master
should wait or ignore this cycle.

HBURST[2:0] Type Description =
000 SINGLE Single transfer
001 INCR Incrementing burst of unspecified length
010 WRAP4 4-beat wrapping burst
o1 INCR4 4-beat incrementing burst -
u
100 WRAPS 8-beat wrapping burst -
u
101 INCRS 8-beat incrementing burst
110 WRAPIL6 16-beat wrapping burst
111 INCR16 16-beat incrementing burst
l¢——— HRESETn HRESETn — -
le——— HCLK HCLK — Lo
|——> HBUSREQ
l«———— HGRANT HSEL —>
——» HLOCK
> HPROT[3:0] HPROT[3:0] ——»|
AMBA |——> HTRANS[1:0] HTRANS[1:0] ———>{
AHB | ——> HADDR[31:0] HADDR[310] ——»| AMBA
AHB
master [» HWRITE HWRITE — slave
——» HSIZE[2:0] HSIZE[2:0] ~——»|
> HBURST[2:0] HBURST[2:0] ——>|
|——> HWDATA[31:0] HWDATA[31:0] ——>|
6 HRDATA[31:0] HRDATA[31:0] «——
l¢——— HRESP[1:0] HRESP[L:0] ~<+——
l«——— HREADY HREADYout —<——
HREADYin ~ ——»|
Copyright © 2013-2017 by Ando Ki AMBA AHB (3

ration

= 1, 4, 8 and 16-beat bursts are defined in

AMBA AHB.
+ Beat means a single cycle of data transfer.

+ Note that bust size does not indicates the
number of bytes.

= Incremental and wrapping bursts are defined.
= Burst must not cross a 1Kbyte address

boundary

+ The minimum address space that can be allocat
ed to a single slave is 1kB.
+ (AXI spec. requires 4Kbyte boundary for burst)

2 All transfers within a burst must be aligned to

the address boundary equal to the size of the
transfer. For example, word transfers must be
aligned to word address boundaries (that is
A[1:0] = 00), halfword transfers must be
aligned to halfword address boundaries (that
is A[0] = 0).

1)

HCLK

HTRANS[1:0] |

HADDR[31:0] |

HBURST[2:0]
HWRITE
HSIZE[2:0]
HPROT[3:0]

HWDATA[31:0]

HREADY

HRDATA[31:0]

Four-beat incrementing burst

3 4-beat incremental (HBURST=3'b011)

with word size (HSIZE=3'b010) starting
from A
+ A, A+4, A+8, A+12

3 4-beat incremental (HBURST=3'b011)

with byte size (HSIZE=3'b000) starting
from A

T ~ ™ T4 b3 3 7 % A, A+, A+2, A+3
[N S R F I R (S R S R
)O(NONSEQ)O‘\ =)O(seQ)C(=)

INCRA

Contol for burst
SIZE = Worl

o [N el XS (o)

V

X

XX
W v vV
X e Gt Rt D

Copyright © 2013-2017 by Ando Ki AMBA AHB (3

~RARERERES

2)

HCLK
HTRANS[1:0]
HADDR([31:0]
HBURST[2:0]
HWRITE
HSIZE[2:0]
HPROT([3:0]

HWDATA[31:0]

HREADY

HRDATA[31:0]

Four-beat wrapping burst

= a four-beat wrapping burst of word (4-
byte) accesses will wrap at 16-byte
boundaries.

+ 4-beat x 4-byte/word = 16-byte boundary

0 S s IS s N N s S s N
_D0C e XX e PO POC e JXC__DOC
_IXX wears X XC
X T 0T X

vV NV VvV
_DOC_IX i D 7 D = L 21

Copyright © 2013-2017 by Ando Ki

AMBA AHB (33)

3
g

HTRANS[1:0]
HADDR[31:0]
HBURST[2:0]
HWRITE
HSIZE[2:0]
HPROT[3:0]

HWDATA[31:0]

HREADY

HRDATA[31:0]

1 2 ™

Eight-beat incrementing burst

& 8-beat incremental (HBURST=3'b101)
with half-word size (i.e., 2-byte,
HSIZE=3'b001) starting from A

+ A, A+2, A+4, A+6, A+8, A+10, A+12, A+14

N A I (N S e I (N A I S

XX
XX

Y-

T Taa Tan Ta
iac] (At {iean) w2

V

Copyright © 2013-2017 by Ando Ki

S G = =

ia

8
i
SHA==== =

AMBA AHB (34)

Undefined-length bursts

= Two half-word (two 2-byte) transfer
starting 0x20

= Three word (three 4-byte) transfer
starting Ox5C

4
=
4
@
4
El
1
@
1
4
@

Holk L L e
HTRANs[1:n]:XX NONSEO){X SEQ XXNDNSEOX:X SEQ X}: SEQ XX

HADDR[31:0] !i 0x20 ﬂ 0222 0x5C XX 050 >:)(x64

:
!

neursTiz0)_ |)Y ncr WX Incr WX
HWRITE |
HSIZE[2:0] S o DX
HPROT[3:0]

HwoaTaat:o) XX DSl X |6 e e
Hreapy [\/ V Wi \ /7 V \Y
HRDATA[31:0] |} o) ez Yoz o =

Copyright © 2013-2017 by Ando Ki AMBA AHB (35)

SRARIKRER

Why wrapping burst is defined?

5 2 & Cache miss can be resolved more faster
Processor 83 Cache § Memory by filling the critical world first.
] 2 . . .
* @ < This requires wrapping burst access
- through system bus.
8 29 e
]\ ge dfda
critical word
first i I
s ol & Does critical word first policy always give
£ a better result than sequential cache
8 oy miss refill policy?
iE < Think of burst-oriented memory, e.g.,
oo DDR, DDR2, DDR3
—‘ address
———{ cache word 1 | cache word 2 [cache word 3 [cache word 0 | —
. pping burst i
Copyright © 2013-2017 by Ando Ki AMBA AHB (36)

Early termination

= A fixed beat transfer should start with
‘NON-SEQ' beat and be followed pre-
defined 'SEQ' beats with 'BUSY" if
required.

= When bus master cannot continue a
complete burst transfer, it can drop the
transfer at any cycles.

<+ Thus, bus slave should be capable to
determine an early termination by
detecting 'NON-SEQ' beat in the middle of
a transfer.

<+ Then, bus slave ends the early terminated
transfer and starts the new transfer.

Copyright © 2013-2017 by Ando Ki AMBA AHB (37)

Protection control

& More information about transfer can give
more opportunity to optimize access

HPROT[3] HPROT[2] HPROT[1] HPROT[0] Description

cacheable bufferable privileged data/opcode related issues
- - - 0 Opcode ferch
- - - 1 Data access .
+ Op-code fetch means there will be no
- - 0 - U . .
e access write on this access.
- - 1 - Privileged access
- 0 - - Not bufferable
l¢——— HRESETn HRESETn —
~ !) ~ Bufferable ke HeLk HCLK —
0 - - - Not cacheable |——> HBUSREQ
l«———— HGRANT HSEL —
1 - - - Cacheable | 5 ock
> HPROT[3:0] HPROT[3:0] ———>|
AMBA [——> HTRANS[1:0] HTRANS[1:0] ———>]
AHB [——> HADDR[31:0] HADDR[31:0] ———» AA’\:I_'BBA
master [——» HWRITE HWRITE — slave
——> HsizE[2:0] HSIZE[2:0] ——»
|——> HBURST[2:0] HBURST[2:0] ——»|
> HWDATA[31:0] HWDATA[31:0] ——>|
l&——— HRDATA[31:0] HRDATA[31:0] «———
l«———— HRESP[1:0] HRESP[L:0] ~<«——
l«——— HREADY HREADYout ~ <——
HREADYin ~ ——»|

The master sets HPROT to 0b0011 to correspond to a Non-cacheable, Non-bufferable, privileged, data access.
Slaves do not use HPROT unless absolutely necessary.

Copyright © 2013-2017 by Ando Ki AMBA AHB (38)

Slave transfer responses

HRESP[1] HRESP[0] Response

Description

‘When HREADY is HIGH this shows the
transfer has completed successfully.

The OKAY response is also used for any
additional cycles that are inserted. with
HREADY LOW. prior to giving one of the
three other responses.

This response shows an error has occurred.
The error condition should be signalled fo
the bus master so that it is aware the transfer
has been unsuccessful.

A two-cycle response 1s required for an error
condition.

The RETRY response shows the transfer has
not vet completed. so the bus master should
retry the transfer. The master should
continue to retry the transfer until it
completes

A two-cycle RETRY response is required.

0 0 OKAY
0 1 ERROR
1 0 RETRY
1 1 SPLIT

The transfer has not yet completed
suceessfully. The bus master must retry the
transfer when it is next pranted access to the
bus. The slave will request access to the bus
on behalf of the master when the transfer can
complete.

A two-cycle SPLIT response is required.

Copyright © 2013-2017 by Ando Ki

I After a master has started a transfer, the
slave then determines how the transfer
should progress. No provision is made
within the AHB specification for a bus
master to cancel a transfer once it has
commenced.

<+ There is no way to cancel transfer by
master.

& The SPLIT and RETRY responses
provide a mechanism for slaves to
release the bus when they are unable to
supply data for a transfer immediately.
Both mechanisms allow the transfer to
finish on the bus and therefore allow a
higher-priority master to get access to
the bus.

AMBA AHB (39)

Two-cycle

ek _ L L L L1

HTRANS[1:0] _w NONSEQ)O(SEQ ﬂ(v IDLE (j}(NONSEQ)|

HADDR[31:0] |

HREADY

-1 2= 2= 23

W -
nwoatapato] (X

7

OC_|

HRESP[1:0] |

Two-cycle

split response

LTS I I S

0C = |
]
)

i>§

HADDR[M:D]:}::\' n \:\
mmm:ﬂ Cortrol ZC:Z
mwoataiol (Y |8 S

HREADY :g:\ N

HRESP[31:0] o)

Copyright © 2013-2017 by Ando Ki

AT

\ o jﬁ_ RETRY § RETRY

response

= Only an OKAY response can be given in a
single cycle. The ERROR, SPLIT and RETRY
responses require at least two cycles

& By driving one more ‘RETRY/ERROR/SPLIT’
respond before actual response, the master
can put ‘IDLE’ cycle before starting the next
cycle.

& This ‘IDLE’ cycle will be cancelled due to
‘RETRY/ERROR/SPLIT".

When the slave needs more than two cycles
to respond ‘RETRY/ERROR/SPLIT’, it puts
‘OKAY’ respond with ‘HREADY” is low before
two-cycle response.

AMBA AHB (40)

20

Retry and split

= The SPLIT and RETRY responses provide a mechanism for slaves to release the bus
when they are unable to supply data for a transfer immediately.

+ Both mechanisms allow the transfer to finish on the bus and therefore allow a higher-priority
master to get access to the bus.

B RETRY
< the arbiter will continue to use the normal priority scheme
< thus, higher priority master can gain the bus.
<9 o] 27} RETRY &% 5H¥, master= A& AAILst1, SA7= e SALA o=
FAE > F, retry 6& ne S ¥3eto] Ao $AEH7E A WS AR

B SPLIT
+ the arbiter adjust priority by using information from slave through HSPLIT[15:0].

+ SPLIT 55 W& vl &= retry @}, ofuk F 2] 7] 7F HSPLITO] & w714 F A ol A vl #) 3} aL,

HSPLIT7} &1 - d5=9] ol F-2st Al WA W2 ARE-S 8] 23k

<+ A bus master should treat SPLIT and RETRY in the same manner. It should continue to
request the bus and attempt the transfer until it has either completed successfully or been
terminated with an ERROR response.

Copyright © 2013-2017 by Ando Ki AMBA AHB (41)

Split

(1) HBUSREQ—»| . [—(2) HMASTER[.}-»|
Arbiter
[¢—(2) HGRANT—
Master Slave
(3) AHB
‘) HREADY & =SPLI
f—(1) HBUSREQ—>| §
e r
retry Arbite @ HsPLIT,
Master Slave
Arbiter
[«—(3) HGRANT—
Master Slave

(4) AHB

4‘17(5) HREADY & HRE SP=0K-

Copyright © 2013-2017 by Ando Ki AMBA AHB (42)

21

Multi-byte endianness

= Little-endian data bus for 32-bit case ® Big-endian data bus for 32-bit case
+ Word-invariance scheme (BE32)

Transfer Address DATA DATA DATA DATA Transfer Address DATA DATA DATA DATA

size offset [31:24] [23:16] [15:8] [7:0] size offset [31:24] [23:16] [15:8] [7:0]

Word 0 v v % % Word 0 % v v v

Halfword 0 v v Halfword 0 % I3

Halfword 2 v v - - Halfword 2 v v

Byte 0 - - - i Byte 0 v

Byte 1 - - v - Byte 1 - v

Bye 2 v Byte 2 - - v

Byte 3 v - - - Byte 3 v
31 0

32-bitregister| : | : | ‘ | ‘ |

Y .)
msp-— little-endian _,

big-endian __,

o = N W

Copyright © 2013-2017 by Ando Ki AMBA AHB (43)

AMBA bus systems

= AMBA AHB bus system
&£ AMBA AHB-Lite
= Multi-layer AHB

Copyright © 2013-2017 by Ando Ki AMBA AHB (44)

22

AMBA AHB bus system

HGRANTZ
HBUSREQZ .
HGRANTI Arbiter Decoder
HBUSREQT |
L AMASTER[3:0] .
HADDR[31.0]
Master #1 >
< » Slave #1
1 HSELT
— | HUPATALS! Slave #2
.| Master #2 [~ > HSEL2
| —
! »
HRDATA[Z1:0] < Slave #3 |«
NG, HSEL3

Copyright © 2013-2017 by Ando Ki

AMBA AHB (45)

& AHB-Lite is a subset of the full AHB specification, where only a single AHB

master is used.

AMBA AHB-Lite

+ A single master > No master-to-slave multiplexor
<+ No request/grant protocol to the arbiter = No arbiter
<+ No split/retry responses from slaves

Master

Slave
#1

Slave
#2

Copyright © 2013-2017 by Ando Ki

Slave
#3

AMBA AHB (46)

Decoder f———————
Stave #1
T HSEL

HADDR

T

] Hwoata

| HRDATA

Slave #2

L ofser
HADDR

HWDATA

-

(

-~

Read Data
Response Mux

HRDATA

Slave #3

L fhse

HADDR

HWDATA

HRDATA

23

Multi-layer AHB

& Multi-layer AHB is an interconnection scheme, based on the AHB protocol, that

enables parallel access paths between multiple masters and slaves in a system.

® Standard AHB master and slave modules can be used without modification.
& Bus contention can be avoided.

Interconnect
Matrix

Decode

I

Master Layer 1
#1 Slave
#

e

|

3 Slave
Master Layer 2 = = #
#2 =
Copyright © 2013-2017 by Ando Ki AMBA AHB (47)
Issues and quiz
= How to deal with accesses to non- = Q1: How does master postpone cycle(s)
existent locations of transfer?
® How to deal with bus grant for no + How to make slave wait by the master?
requesting = Q2: How does slave postpone cycle(s) of
transfer?

+ How to make master wait by the slave?
= Q3: Why slave needs to see HREADY?

Copyright © 2013-2017 by Ando Ki AMBA AHB (48)

24

References

© ARM, AMBA Specification, Chapter 3 AMBA AHB, ARM IHI 0011A, 1999.
= ARM, AMBA3 AHB-Lite Protocol Specification, v1.0, ARM IHI 0033A, 2006.
= ARM, Multi-layer AHB Overview, ARM DVI 0045B, 2004.

= ARM, AMBA 5 AHB Protocol Specification, AHB5, AHB-Lite, ARM IHI 0033B,
2015.

Copyright © 2013-2017 by Ando Ki AMBA AHB (49)

25

