Introduction to AMBA AHB

2013 - 2017

Ando Ki (adki@future-ds.com)

an extension of AMBA 3 AXI channel architecture burst transfers
Image: Second State Sta

All AMBA bus signals are which bus the signal is as	named such that the first letter of the name indicates
→ H: AHB signal, e.g., HCL	.К.
♦ P: APB signal, e.g., PCL	К.
♦ B: ASB signal, e.g., BCL	К.
A: unidirectional signal b	between ASB bus master to the arbiter, e.g., AGNTx, AREQx
D: unidirectional ASB de	coder signal, e.g., DSELx.
A lower case 'n' at the en low. Otherwise all signal i	d of the signal name indicates that the signal is active names are always upper case.
♦ E.g., HRESETn, PRESE	Tn.
Test signals have a prefix	: 'T' regardless of the bus type.

signal	from	to	remarks
HBUSREQ[15:0]	master	arbiter	
HGRANT[15:0]	arbiter	master	
HLOCK[15:0]	master	arbiter	
HMASTER[3:0]	arbiter	Mux, slave	
HMASTERLOCK	arbiter		
HSPLIT[15:0]	slave	arbiter	
HTRANS[1:0]	master	arbiter	
HBURST[2:0]	master	arbiter	
HRESP[1:0]	slave	arbiter	
HREADY	slave	arbiter	
onvright @ 2013-2017 by Ando Ki			(17)

HBURST[2:0]	Туре	Description	1, 4, 8 and 16-beat bursts are defined in
000	SINGLE	Single transfer	 AMBA AHB. Beat means a single cycle of data transfer.
001	INCR	Incrementing burst of unspecified length	
010	WRAP4	4-beat wrapping burst	 Note that bust size does not indicates the number of bytes
011	INCR4	4-beat incrementing burst	Incremental and wrapping bursts are defined.
100	WRAP8	8-beat wrapping burst	Buret must not eress a 1/buts address
101	INCR8	8-beat incrementing burst	boundary
110	WRAP16	16-beat wrapping burst	 The minimum address space that can be allocated
111	INCR16	16-beat incrementing burst	ed to a single slave is 1kB.
AMBA AHB AHB	- HRESETn - HCLK + HBUSREQ - HGRANT + HLOCK + HPROT[3:0] + HRADR[3:0] - HRADR[3:0] - HWITE + HSIZE[2:0] + HWITE + HSIZE[2:0] - HBURST[2:0] - HBURST[2:0] - HRUDATA[31:0] - HREDATA[31:0] - HREADY	HRESETN HCLK HSEL HPROT[3:0] HADDR[31:0] HWRITE HSIZE[2:0] HWDATA[31:0] HREADYOU HREADYOU HREADYOU H	All transfers within a burst must be aligned to the address boundary equal to the size of the transfer. For example, word transfers must be aligned to word address boundaries (that is A[1:0] = 00), halfword transfers must be aligned to halfword address boundaries (that is A[0] = 0).

					More information about transfer can give
HPROT[3] cacheable	HPROT[2] bufferable	HPROT[1] privileged	HPROT[0] data/opcode	Description	more opportunity to optimize access
-	-	-	0	Opcode fetch	
-	-	-	1	Data access	• On code fotch means there will be no
-	-	0	-	User access	write on this access.
-	-	1	-	Privileged access	
-	0	-	-	Not bufferable	·
-	1	-	-	Bufferable	
0	-	-	-	Not cacheable	HBUSREQ
1	-	-	-	Cacheable	AMBA AHB AHB master HBRZEI2:0] HBURST[2:0] HBURST[2:0] HBURST[2:0] HBURST[2:0] HBURST[2:0]

HRESP[1]	HRESP[0]	Response	Description	After a master has started a transfer, the
0	0	OKAY	When HREADY is HIGH this shows the transfer has completed successfully. The OKAY response is also used for any additional cycles that are inserted, with HREADY LOW, prior to giving one of the three other responses.	slave then determines how the transfer should progress. No provision is made within the AHB specification for a bus master to cancel a transfer once it has
)	1	ERROR	This response shows an error has occurred. The error condition should be signalled to the bus master so that it is aware the transfer has been unsuccessful. A two-cycle response is required for an error condition.	 commenced. There is no way to cancel transfer by master.
L	0 RETRY	The RETRY response shows the transfer has not yet completed, so the bus master should retry the transfer. The master should continue to retry the transfer until it completes. A two-cycle RETRY response is required.	The SPLIT and RETRY responses provide a mechanism for slaves to release the bus when they are unable to	
l	1	SPLIT	The transfer has not yet completed successfully. The bus master must retry the transfer when it is next granted access to the bus. The slave will request access to the bus on behalf of the master when the transfer can complete. A two-cycle SPLIT response is required.	supply data for a transfer immediately. Both mechanisms allow the transfer to finish on the bus and therefore allow a higher-priority master to get access to the bus.

Issues and quiz		
Q1: How does master postpone cycle(s) of transfer?		
How to make slave wait by the master?		
Q2: How does slave postpone cycle(s) of transfer?		
How to make master wait by the slave?		
Q3: Why slave needs to see HREADY?		

	References
 ARM, AMBA Specification ARM, AMBA3 AHB-Lite ARM, Multi-layer AHB C ARM, AMBA 5 AHB Prot 2015. 	on, Chapter 3 AMBA AHB, ARM IHI 0011A, 1999. Protocol Specification, v1.0, ARM IHI 0033A, 2006. Overview, ARM DVI 0045B, 2004. Motocol Specification, AHB5, AHB-Lite, ARM IHI 0033B,
Commission @ 2012 2017 by Ando Ki	