

Objectives

- Build SDC files for constraining PLD designs
- Verify timing on simple & complex designs using TimeQuest TA

Timing Analysis Agenda

- TimeQuest basics
- Timing constraints
- Example

TimeQuest GUI

© 2009 Altera Corporation

SDC File Editor = Quartus II Text Editor

- Use Quartus II editor to create and/or edit SDC
- SDC editing unique features (for .sdc files)
 - Access to GUI dialog boxes for constraint entry (Edit ⇒ Insert Constraint)
 - Syntax coloring
 - Tooltip syntax help

					Quar	tus II I	-ile	me	nu ⇒ ∣	New =	⇒ O	ther F	iles		
apo ()uart	us II -	C:									rip-man pa			×
File	Edit	View	Projec	t Tool	ls Window										
		35													1
-0		36													
纳		37	≡#*	* * * * *	*******	*******	*****	******	********	* * * * * * * * * *	* * * *				
24		38	#	Creat	te Clock										
\rightarrow		39	#*	*****	*******	********	*****	******	*******	* * * * * * * * * * *	****				
{}		40			rali a a la an	ama (allel)		4 6 000	marrafarm	(0 000 3	000.	Last series	(~1)=1)]	مطط	
锺		42	CL	eace	create clock	addl[_pame <cl< th=""><th>-perio</th><th></th><th>value>[-wavel01m</th><th></th><th>Contargets</th><th>[get_ports</th><th>(CIKI)]</th><th>-auu</th><th></th></cl<>	-perio		value>[-wavel01m		Contargets	[get_ports	(CIKI)]	-auu	
÷=		43			-add: Adds cl	ock to a node with	an existi	ng clock		III <coge_list>j</coge_list>	[[<colgoes <="" th=""><th>2 </th><th></th><th></th><th></th></colgoes>	2			
		44	≡#*	****	-name <clock< th=""><th>_name>: Clock na</th><th>me of the</th><th>e created clo</th><th>ock</th><th></th><th></th><th></th><th></th><th></th><th></th></clock<>	_name>: Clock na	me of the	e created clo	ock						
1		45	#	Set :	-period <valu< th=""><th>edge list>: List of</th><th>edge val</th><th>erms of clock Lies</th><th>< period</th><th></th><th></th><th></th><th></th><th></th><th></th></valu<>	edge list>: List of	edge val	erms of clock Lies	< period						
94		46	#*	****	<targets>: L</targets>	ist or collection of	targets								
54		47					T								_
		48	se	t_inp	out_delay	-add_delay	-nax	-clock	[get_clocks	(clk1)]	3.250	[get_ports	{dataa[]	1] }]	
76		49	se	t_inp	out_delay	-add_delay	-nin	-clock	[get_clocks	<pre>{clk1}]</pre>	1.750	[get_ports	{dataa[]	1]}]	
ŵ		51	Se ee	t_ing	out_delay	-add_delay	-nax	-clock	[get_clocks	$\langle CIKI \rangle]$	1 750	[get_ports	{dataa[3	2171	
		52	se	t in	out delay	-add delay	-max	-clock	[get_clock	(clk1)	2.500	[get_ports	(wraddre	ess[0])]	
\overline{D}		53	se	tin	out delay	-add delay	-min	-clock	[get clocks	{clk1}]	1.000	[get ports	{wraddre	235[0])]	
Ð		54	se	ting	out delay	-add delay	-max	-clock	[get clocks	(clk1)]	2.500	[get ports	{wraddre	≥ss[1])]	
		55	se	t_ing	out_delay	-add_delay	-min	-clock	[get_clocks	[clk1]	1.000	[get_ports	{wraddre	ess[1]}]	
267		56	se	t_inp	out_delay	-add_delay	max	-clock	[get_clocks	[clk1}]	2.500	[get_ports	{wraddre	288[2]}]	
ab/		57	se	t_inp	out_delay	-add_delay	min	-clock	[get_clocks	[clk1]	1.000	[get_ports	{wraddre	288[2]}]	
1		58	se	t_inp	out_delay	-add_delay	-max	-clock	[get_clocks	<pre>{clk1}]</pre>	2.500	[get_ports	{wraddre	255[3]}]	
'.		59	se	t_ing	out_delay	-add_delay	-min	-clock	[get_clock:	$\{CIKI\}$	2 500	[get_ports	(wraddre	233[3]}]	
		61	se	t inr	out delay	-add_delay	-min	-clock	[get_clock	$\{c k1\}$	1.000	[get_ports	(wren)]		
Ξ		62	se	tin	out delay	-add delay	-max	-clock	[get clocks	(clk1)]	2.500	[get ports	{rdaddre	235[4])]	
5		63	se	ting	out delay	-add delay	-min	-clock	[get clocks	(clk1)]	1.000	[get ports	(rdaddre	255[4])]	
-		64	se	t_ing	out_delay	-add_delay	-max	-clock	[get_clocks	{clk1}]	2.500	[get_ports	{wraddre	ess[4])]	
		65	se	t_inp	out_delay	-add_delay	-min	-clock	[get_clock:	[clk1]	1.000	[get_ports	{wraddre	235[4]}]	
		66	se	t_inp	out_delay	-add_delay	-max	-clock	[get_clocks	[clk1]	2.500	[get_ports	{rdaddre	235[0]}]	
	J	67	se	t_ing	out_delay	-add_delay	-min	-clock	[get_clocks	s {clk1}]	1.000	[get_ports	{rdaddre	235[0]}]	1
For H	elp, pr	ess F1										Ln 41, 9	Iol 9		

TimeQuest File menu ⇒ New/Open SDC File

Place cursor over command to see tooltip

© 2009 Altera Corporation

SDC File Editor (cont.)

Construct an SDC file using TimeQuest graphical constraint creation tools

Create Clock

Clock name:

Period:

clk

10.000

ns

© 2009 Altera Corporation

Basic Steps to Using TimeQuest TA

- 1. Generate timing netlist
- 2. Enter SDC constraints
 - a. Create and/or read in SDC file (recommended method)

or

- b. Constrain design directly in console
- 3. Update timing netlist
- 4. Generate timing reports
- 5. Save timing constraints (optional)

© 2009 Altera Corporation

Using TimeQuest TA in Quartus II Flow

Timing Analysis Agenda

- TimeQuest basics
- Timing constraints
- Example

Importance of Constraining

- Timing analysis tells how a circuit WILL behave
- Providing timing constraints tells tools how you WANT the design to behave
 - Constraints paint picture of how design should operate
 - Based on design specs & specs from other devices on PCB
 - Provide goals for fitter to target during compilation
 - Provide values to which to compare timing results
- TimeQuest TA performs limited analysis without timing constraints

Timing Requirements: Enter Constraints

- All constraints discussed can be easily accessed in TimeQuest GUI
 - Constraints menu of TimeQuest
 - Edit ⇒ Insert
 Constraint menu of
 SDC File Editor

😃 Quartus II TimeQu	est Timing	Analyze	r - D: <i>l</i> a	alter
File Edit View Netlist	Constraints	Reports	Script	Tool
Report	Create Clo	ock		
TimeQuest Tit	Create Generated Clock Set Clock Latency Set Clock Uncertainty Set Clock Groups Remove Clock Set Input Delay Set Output Delay			
Tasks Report F Report f	Set Multic Set Maxim Set Minimu	ycle Path ium Delay. um Delay		
E Create 9	Generate Read SDC Write SDC	SDC File fr File File	rom QSF	
Report A	Reset Design			

SDC Netlist Terminology

Term	Definition
Cell	Device building blocks (e.g. look-up tables, registers, embedded multipliers, memory blocks, I/O elements, PLLs, etc.)
Pin	Input or outputs of cells
Net	Connections between pins
Port	Top-level inputs and outputs (e.g. device pins)

SDC Netlist Example

Paths defined in constraints by targeted endpoints (pins or ports)

© 2009 Altera Corporation

Collections

- Searches and returns from the design netlist with a list of names meeting criteria
- Used in SDC commands
 - Some collections searched automatically during a command's usage and may not need to be specified
- Examples

© 2009 Altera Corporation

- get_ports
- get_pins
- get_clocks
- all_clocks
- all_registers
- all_inputs
- all_outputs

See "TimeQuest Timing Analyzer" chapter of the Quartus II Software Handbook (Volume 3) for a complete list & description of each

SDC Timing Constraints

- Clocks
- I/O
- False paths
- Multicycle paths

What are clocks in SDC?

- Defined, repeating signal characteristics applied to a point anywhere in the design
 - Internal: applied to a specific node being used as a clock in design (port or pin)
 - "Virtual": No real source in, or direct interaction with design
 - Example: Clocks on external devices that feed or are fed by the FPGA design, required for I/O analysis
- Name clocks after node to which they are applied or something more meaningful
- Similar to clock settings in older Quartus II timing engine (Classic timing analyzer)

© 2009 Altera Corporation

Clocks in SDC (cont.)

Two types

- Clock
 - Absolute or base clock
- Generated clock
 - Timing derived from another clock in design
 - Must have defined relation with source clock
 - Apply to output of logic function that modifies clock input
 - PLLs, clock dividers, output clocks, ripple clocks, etc.
 - Clock inversions automatically detected unless derived from more complex logic structure

All clocks are related by default

Cross-domain transfers analyzed

© 2009 Altera Corporation

Clock Constraints

- Create clock
- Create generated clock
- PLL clocks
- Automatic clock detection & creation
- Default constraints
- Clock latency
- Clock uncertainty
- Common clock path pessimism removal

Creating a Clock

Command: create_clock

Options

[-name <clock_name>]

-period <time>

[-waveform {<rise_time> <fall_time>}]

[<targets>]

[-add]

[] = optional

<u>Note</u>: In general, the more options added to a constraint command, the more specific the constraint is. When options are not specified, the constraint is more generalized and pertains to more of the target.

© 2009 Altera Corporation

create_clock Notes

- -name: Assigns name to the clock to be used in other commands & reports when referring to clock
 - Optional; defaults to target name if not specified
- -waveform: Indicates clock offset or non-50% duty cycle clocks
 - 50% duty cycle is assumed unless otherwise indicated
- -add: Adds clock to node with existing clock
 - Without -add, warning given and subsequent clock constraints ignored
- <targets>: Target ports or pins for clock setting
 - Virtual clock created if no target specified

create_clock Examples

create_clock -period 20.0 -name clk_50 [get_ports clk_in]

create_clock -period 10.0 -waveform {2.0 8.0} [get_ports sysclk]

© 2009 Altera Corporation

Create Clock using GUI

Creating a Generated Clock

Command: create_generated_clock

Options

```
[-name <clock_name>]
-source <master_pin>
[-master_clock <clock_name>]
[-divide_by <factor>]
[-divide_by <factor>]
[-multiply_by <factor>]
[-duty_cycle <percent>]
[-invert]
[-phase <degrees>]
[-edges <edge_list>]
[-edge_shift <shift_list>]
[<targets>]
[-add]
```


create_generated_clock Notes

- In the source: Species the node in design from which generated clock is derived
 - Ex. Placing source before vs. after an inverter would yield different results
- -master_clock: Used if multiple clocks exist at source due to -add option
- –edges: Relates rising/falling edges of generated clock to rising/falling edges of source based on numbered edges
- -edge_shift: Relates edges based on amount of time shifted (requires -edges)

ATERA.

Create Generated Clock using GUI

Create Generated Clock							
Clock name:	clkx2						
Source:	[get_pins {inst1 altpll_component pll inclk[0]}]						
Relationship to sou	rce						
Based on frequ	ency						
Divide by:	Phase:						
Multiply by:	2 Offset:						
Duty cycle:							
C Based on wave	form						
Edge list:							
Edge shift list:	ns ns ns						
Invert waveform	n						
Targets:	[get_pins {inst1 altpll_component pll clk[0]}]						
SDC command:	create_generated_clock -name clkx2 -source [get_pins {inst1 altpll_compone						
	Insert Cancel Help						

© 2009 Altera Corporation

Generated Clock Example 1

create_clock -period 10 [get_ports clk_in]

```
create_generated_clock -name clk_div \
    -source [get_pins inst|clk] \
    -divide_by 2 \
    [get_pins inst|regout]
```

风店?么.

Generated Clock Example 2

create_clock -period 10 [get_ports clk_in]

```
create_generated_clock -name pulse_clk_out -source clk_in \
    -edges {1 4 5}
    [get_pins pulse_logic|out]
```

Master edges are numbered 1..<n>. In the edge list, the first # number corresponds to the first rising edge of the generated # clock. The second number is the first falling edge. The third # number is the second rising edge. Thus, a clock is created that # is half the period of the source with a 75% duty cycle.

Generated Clock Example 3

[get_pins pulse_logic|out]

Same as example 2 except -edge_shift shifts each edge indicated
amount of time

PLL Clocks (Altera SDC Extension)

- **Command:** derive_pll_clocks
 - [-use tan name]: names clock after design net name from Classic timing analyzer settings instead of the default PLL output SDC pin name
 - [-create_base_clocks]: generates create_clock constraint(s) for PLL input clocks
- Create generated clocks on all PLL outputs
 - Based on input clock & PLL settings
- Requires defining PLL input as clock unless -create_base_clocks is used
- Automatically updates generated clocks on PLL outputs as changes made to PLL design
- write_sdc -expand expands constraint into standard create_clock and create_generated_clock commands
- Not in GUI; must be entered in SDC manually

© 2009 Altera Corporation

© 2009 Altera Corporation

Automatic Clock Detection & Creation

- Command: derive_clocks
 - [-period]: same use as with create_clock
 - [-waveform]: same use as with create_clock
 - No target required
- Automatically create clocks on clock pins in design that don't already have clocks defined
- Does not work with PLL outputs (use derive_pll_clocks)
- SDC extension expanded with write_sdc -expand
- Not in GUI
- Not recommended for final timing sign-off

© 2009 Altera Corporation

Default Clock Constraints

- Remember, all clocks must be constrained to analyze design with timing analysis
- If no clock constraints exist, default constraints created through two commands

derive_clocks -period 1.0

derive_pll_clocks

Default constraints not applied if at least one clock constraint exists

Not in GUI

Not recommended for final timing sign-off

© 2009 Altera Corporation

Non-Ideal Clock Constraints

- So far, all clocks have been ideal
 - Nice square waves
 - No accounting for delays outside of FPGA
- Add extra constraints to define realistic, non-ideal clocks
- Three special constraints
 - set_clock_latency
 - set_clock_uncertainty
 - derive_clock_uncertainty

Clock Latency

- Two types of latency
 - Source: From clock source to input port (board latency)
 - Network: From input port to destination register clock pin
- Network latency handled and understood by timing analysis automatically
- Need to model source latency
 - TimeQuest TA knows nothing about delays external to device
- Provide a more realistic picture of external clock behavior
- Example
 - External feedback clock: need to specify delay from clock output I/O to clock input I/O
- Clocks created with create_clock have default source latency of 0

Clock Latency (cont.)

- Command: set_clock_latency
- Specify source latency on external path(s) to device
- Options
 - -source
 - [-clock <clock_list>]
 - [-early | -late]
 - [-fall | -rise]
 - <delay>
 - <targets>

set_clock_latency Notes

- -source: required argument for constraint (no options)
- -fall | -rise: latency applied on only falling or rising edge of clock
- -early | -late: latency on shortest/longest external path
 - Used by timing analyzer as part of definition of data/clock arrival paths for setup/hold analyses

Clock Latency (GUI)

Set Clock Later	су	
Latency type		
C Early		C Rise
C Late		C Fall
Both		Both
Delay value:	2 ns	
Targets:	[get_clocks {clk_in	भ
	,	
SDC command:	set_clock_latency	-source 2 [get_clocks {clk_in}]
		Insert Cancel Help

Clock Uncertainty

- Command: set_clock_uncertainty
- Use to model jitter, guard band, or skew
 - Allows generation of clocks that are non-ideal
- Options
 - [-setup | -hold]
 - [-fall_from <fall_from_clock>]
 - [-fall_to <fall_to_clock>]
 - [-from <from_clock>]
 - [-rise_from <rise_from_clock>]
 - [-rise_to <rise_to_clock>]
 - [-to <to_clock>]
 - <value>

© 2009 Altera Corporation

Clock Uncertainty

Setup uncertainty decreases setup required time

Hold uncertainty increases hold required time

Ex. To add a 0.5-ns guardband around clock, use 250 ps of setup uncertainty and 250 ps of hold uncertainty.

Clock Uncertainty (GUI)

Set Clock Unce	rtainty	×
From clock:	clk_in	•
To clock:	clk_div	•
Uncertainty:	0.5 ns C Hold	
SDC command:	set_clock_uncertainty -from clk_in -to clk_div -setup 0.5	-
	Insert Cancel Help	

Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation 44

© 2009 Altera Corporation

Automatically Derive Uncertainty

- Command: derive_clock_uncertainty
- Automatically derive clock uncertainties in supported devices
 - Cyclone III, Stratix II, HardCopy® II, Stratix III, and new devices
- Uncertainties created manually with set_clock_uncertainty have higher precedence

Options

- [-overwrite]: overwrites any existing uncertainty constraints
- [-add]: adds derived uncertainties to existing constraints
- SDC extension expanded with write_sdc -expand

• Not in GUI

Common Clock Path Pessimism Removal

- Remove clock delay pessimism to account for min/max delays on common clock paths (Cyclone III, Stratix III and newer devices)
 - Ex: Max delay for data arrival time; min delay for data required time
- Also used to improve minimum required clock pulse widths
- Enable for fitter and for timing analysis
 - TimeQuest Timing Analyzer settings in Quartus II software
 - enable_ccpp_removal in TimeQuest script or console

Checking Clock Constraints

- Nodes used as clocks but not defined with SDC clock constraint considered unconstrained
- Solution
 - Use Unconstrained Paths Report to find unconstrained clocks
 - Quartus II Compilation Report timing summary
 - Run report_ucp command
 - Choose Report Unconstrained Paths (Tasks Pane or Reports menu)
 - Use Clock Report to verify clocks are constrained correctly

Unconstrained Path Report

Quartus II TimeQuest Timing Analyzer - C:/	altera_trn/Quartus_II_Softwa	.re_Design_Ser	
File Edit View Netlist Constraints Reports Script	Tools Window Help		
Report X	Unconstrained Paths Summary		
TimeQuest Timing Analyzer Summary	Property	Setup Hold	Unconstrained Paths
Unconstrained Paths	1 Illegal Clocks	0 0	Summary Report indicates
Unconstrained Paths Summary	Unconstrained Clocks	1 1	how many clock nodes are
	3 Unconstrained Input Ports	34 34	unconstrained (along with
Hold Analysis	4 Unconstrained Input Port Paths	51 51	other unconstrained paths)
	5 Unconstrained Output Ports	32 32	
	6 Unconstrained Output Port Paths	32 32	
	Quartus II TimeQuest T	iming Analyze	- C:/altera_trn/Quartus_II_Software_D

Clock Status Summary Report lists each clock found and whether it was constrained

© 2009 Altera Corporation

Report Clocks (report_clocks)

List details about the properties of constrained clocks

© 2009 Altera Corporation

SDC Timing Constraints

- Clocks
- I/O
- False paths
- Multicycle paths

I/O Constraints

- Combinatorial I/O interface
- Synchronous I/O interface
- Source synchronous interface

Combinatorial Interface

- All paths from IN to OUT need to be constrained
- Use set_max_delay & set_min_delay commands
 - Specify an absolute maximum & minimum delay between points

Options
[-from <names>]
[-to <names>]
[-to <names>]
[-fall_from <clocks>]
[-rise_from <clocks>]
[-fall_to <clocks>]
[-rise_to <clocks>]
[-through]
<delay>

set_max_delay & set_min_delay Notes

Indicate source & destination nodes for constraints

-through: Use to indicate the constraint should only be applied to path(s) going through a particular node name

set_max_delay & set_min_delay (GUI)

Set Maximum D	elay 🛛
From:	[get_ports in{0}]
Through:	
To:	[get_ports out*]
Delay value:	5.0 ns
SDC command:	set_max_delay -from [get_ports in{0}] -to [get_ports out*] 5.0
	Insert Cancel Help

Combinatorial Interface Example

set_max_delay -from [get_ports in1] -to [get_ports out*] 5.0
set_max_delay -from [get_ports in2] -to [get_ports out*] 7.5
set_max_delay -from [get_ports in3] -to [get_ports out*] 9.0

set_min_delay -from [get_ports in1] -to [get_ports out*] 1.0
set_min_delay -from [get_ports in2] -to [get_ports out*] 2.0
set_min_delay -from [get_ports in3] -to [get_ports out*] 3.0

Synchronous Inputs

Need to specify timing relationship from ASSP to FPGA/CPLD to guarantee setup/hold in FPGA/CPLD

* Represents delay due to capacitive loading

Synchronous Inputs

58

Constraining Synchronous Inputs

 Use set_input_delay (-max option) command to constrain input setup time (maximum time to arrive and still meet T_{su})

- Calculated input delay value represents all delays external to device

- input delay max = Board Delay (max) Board clock skew (min) + $T_{co(max)}$ = $(T_{data_PCB(max)} + T_{CL}) - (T_{clk2ext(min)} - T_{clk1(max)}) + T_{co(max)}$ data arrival time = launch edge + input delay max + $T_{dataint}$
- data arrival time data required time slack
- = latch edge + $T_{clk2int}$ T_{su}
- = required time data arrival time
- Use set_input_delay (-min option) command to constrain input hold time (minimum time to stay active and still meet T_h)
 - Calculated input delay value represents all delays external to device

input delay min	= Board Delay (min) - Board clock skew (max) + T _{co(min)}
	= $(T_{data_{PCB(min)}} + T_{CL}) - (T_{clk2ext(max)} - T_{clk1(min)}) + T_{co(min)}$
data arrival time	= launch edge + input delay min + T _{dataint}
required time	= latch edge + $T_{clk2int}$ + T_{h}
slack	= data arrival time - data required time

© 2009 Altera Corporation

set_input_delay Command

Constrains input pins by specifying external device timing parameters

Options

- -clock <clock name>
- [-clock fall]
- [-rise | -fall]
- [-max | -min]
- [-add_delay]
- [-reference_pin <target>]
- [-source_latency_included]
- <delay value>
- <targets>

set_input_delay Notes

- -clock: Specifies the clock driving the source (external) register
 - Used to determine launch edge vs. latch edge relationship
- -clock_fall: Use to specify input signal was launched by a falling edge clock transition
- -rise | -fall: Use to indicate whether input delay value is for a rising or falling edge transaction
- -add_delay: Use to specify multiple constraints on single input
 - Only one set of max/min & rise/fall constraints allowed on an input pin
 - Ex. Constraining one input port driving two registers in different clock domains would require the -add_delay option

set_input_delay Notes

- -reference_pin: Use to specify that delays are with respect to some other port or pin in the design
 - Example: Feedback clock: Input delay is relative to an output port being fed by a clock
- -source_latency_included: input delay value specified includes clock source latency normally added automatically
 - Tells TimeQuest to ignore any clock latency constraints applied to source clock
- To fully constrain, must specify both -max & -min
 - Each will default to the value of the other setting if only one assigned (same with rise/fall)
 - Warning message if one or the other not specified

ADERA.

Synchronous Outputs

Need to specify timing relationship from FPGA/CPLD to ASSP to guarantee clock-tooutput times in FPGA/CPLD

* Represents delay due to capacitive loading

© 2009 Altera Corporation

Synchronous Outputs

Constraining Synchronous Outputs

 Use set_output_delay (-max option) command to constrain maximum clock-to-output (maximum time to arrive and still meet ASSP's T_{su})

- Calculated output delay value represents all delays external to device

output delay max	= Board Delay (max) - Board clock skew (min) + T` _{su}
	= $(T_{data_{PCB(max)}} + T_{CL}) - (T_{clk2(min)} - T_{clk1ext(max)}) + T_{su}$
data arrival time	= launch edge + $T_{clk1int}$ + $T_{co(max)}$ + $T_{dataint}$
data required time	= latch edge - output delay max
slack	= data required time - data arrival time

- Use set_output_delay (-min option) command to constrain minimum clock-to-output (minimum time to stay active and still meet ASSP's T_h)
 - Calculated output delay value represents all delays external to device

output delay min= E= (data arrival timedata required timeslack= c

- = Board Delay (min) Board clock skew (max) T_{h}
- = $(T_{data_PCB(min)} + T_{CL}) (T_{clk2(max)} T_{clk1ext(min)}) T_{h}$
- = launch edge + $T_{clk1int}$ + $T_{co(min)}$ + $T_{dataint}$
- = latch edge output delay min
- = data arrival time data required time

© 2009 Altera Corporation

set_output_delay Command

Constrains output pins by specifying external device timing parameters

Options

- -clock <clock_name>
- [-clock_fall]
- [-rise | -fall]
- [-max | -min]
- [-add_delay]
- [-reference_pin <target>]
- <delay value>
- <targets>

set_output_delay Notes

Same notes as set_input_delay command

Input/Output Delays (GUI)

Set Input Delay	/	
Clock name:	⊂lk ■ Use falling clock edge	
Input delay opti	ons	L
⊂ Minimum	 ⊂ Rise ⊂ Fall ● Both 	
Delay value: Targets:	5 ns Add delay [get_ports d*]	/
SDC command:	set_input_delay -clock { clk } -max 5 [get_ports d*] Insert Cancel	

Synchronous I/O Example

69

Source-Synchronous Interfaces

- Both data & clock transmitted by host device with designated phase relationship (e.g. edge or center-aligned)
 - No clock tree skew included in calculation
 - Target device uses transmitted clock to sample incoming data
- Data & clock routed identically to maintain phase relationship at destination device
 - Board delay not included in external delay calculations
 - Clock trace delay (data required time) & Data trace delay (data arrival time) are equal and offset
 - Enables higher interface speeds (compared to using system clock)

* The PLL in this example, represented by a single symbol, is actually generating multiple outputs clocks

© 2009 Altera Corporation

SDR Source-Synchronous Input (Center-Aligned)

- Total setup/hold relationship of FPGA to clock (clkin) already defined by output waveform of external device
 - T_{su} is start of DVW
 - T_h is end of DVW
- Must derive set_input_delay values from T_{su} & T_h

* The PLL in this example is used to maintain the input clock to data relationship

© 2009 Altera Corporation

SDR Source-Synchronous Input (Center-Aligned)

Waveform @ output from external device

Note: In reality for high-speed designs, there would be some max/min board & clock delay that would need to be figured into the analysis.

SDR Source-Synchronous Input (Center-Aligned)

Waveform @ output from external device

© 2009 Altera Corporation

Using SDC with Source-Sync Input

- Create clock on clock input port
- Use set_input_delay command with reference to clock input
 - Same as with synchronous input
 - Do not include board delay parameters in value

SDR Source-Synchronous Output (Center-Aligned)

Notes:

- 1) In reality for high-speed designs, there would be some max/min board & clock delay that would need to be figured into the analysis.
- 2) The PLL in this example is used to shift output clock to establish an output clock to data relationship
- © 2009 Altera Corporation

Using SDC with Source-Synch Output

This path must be analyzed when calculating data required time

- Must tell TimeQuest to analyze path from clock source to output clock port during analysis
- Use set_output_delay command on dataout with reference to generated clock on output port
 - Create generated clock on output clock port (source is PLL output pin)
 - Use -clock argument in output delay assignment to associate output clock to output data bus
- Path from PLL output pin to output port still considered unconstrained (clock path viewed as a data path by timing analyzer)
 - Constrain path from PLL pin to output port with false path (described later), set min/max delay, or set output delay

Constraining Source-Sync Output Example

```
create_clock 5 -name clkin \
        [get ports clkin]
create generated clock -name pllclk divide by 1 \
        -source [get ports clkin]
        [get_pins inst|altpll_component|pl1|clk[0]]
```

```
# Place clock on external clock output
create generated clock -name clkout \
         -source [get_pins inst|altpll_component|pll|clk[0]] \
         -divide by 1 \setminus
         [get ports clkout]
```

```
# Constrain dataout with an external tsu of 0.5 ns
# and th of 0.5 ns using clkout as clock
set_output_delay -clock [get_clocks clkout]
        -max 0.500
        [get ports dataout]
set_output_delay -clock [get_clocks clkout]
        -min -0.500
        [get ports dataout]
```

© 2009 Altera Corporation

Source Synchronous Summary (Center-Aligned)

	Maximum	Minimum		
Input delay setting (ns)	(latch edge – launch edge) - T _{su}	T _h		
Output delay setting (ns)	T _{su}	-T _h		

© 2009 Altera Corporation

Source Synchronous (Edge-Aligned)

	Maximum	Minimum		
Input delay setting (ns)	(latch edge – launch edge) - T _{su}	-T _h		
Output delay setting (ns)	T _{su}	T _h		

© 2009 Altera Corporation

Checking I/O Constraints

- Helpful TimeQuest reports to run to verify constraints
- Report SDC
- Report Unconstrained Paths (again)
- Report Ignored Constraints

Report SDC (report_sdc)

List SDC constraints applied to netlist

Report X	Create Clock		0+	Cr	eate Generated Clock					0-2
🗆 🔄 SDC Assignments	SDC Command Name	Period Waveform T	argets A	Г	SDC Command	Name	Source		Duty Cycle	Multiply
Create Clock	1 create clock clk in	100mhz 10.000 { 0.000 5.000 } [a	et ports {clk in 100mhz}]	1	create generated clock	c100	loet pins {inst1 lalto	l componentipillincik(0)}1	50.000	1
Create Generated Clock			in Monoral and Market and	2	create generated clock	c200	[get_pins {inst1 alto	l componentipillincik[0]}	50.000	2
Set Input Delay				3	create generated clock	c100 out	[get_pins {inst1]altr	ull_componentIpIIIinclk[()]}]	50.000	1
Set Output Delay		Base clock		4	create_generated_clock	clkout	[get_pin	norotod ol		
Set Multicucle Path							Ge	enerated cl	OCKS	
Bo Sermanoycie Faur	<u>×</u>		<u> </u>	1						
	Set Input Delay			56	t Output Delay					0 -
	SDC Command Flag	Clock Name Dela	y Ports 🦯		SDC Command Flags	Clock N	ame Delay	Ports	Source La	itency 📥
	1 set_input_delay -max	[get_clocks clk_in_100mhz] 4.500	0 [get_ports din_a[0]] -	1	set_output_delay -max	[get_clo	cks clkout] 0.500	[get_ports multout_ab[15]]	
	2 set_input_delay -min	[get_clocks clk_in_100mhz] 1.000	0 [get_ports din_a[0]] ·	2	set_output_delay -min	[get_clo	cks clkout] -0.500	[get_ports multout_ab[15]]	
	3 set_input_delay -max	[get_clocks clk_in_100mhz] 4.500	0 [get_ports din_b[0]] -	3	set_output_delay -max	[get_clo	cks clkout] 0.500	[get_ports multout_ab[14]]	
	4 set_input_delay -min	[get_clocks clk_in_100mhz] 1.000	0 [get_ports din_b[0]] -	4	set_output_delay -min	[get_clo	cks clkout] -0.500	[get_ports multout_ab[14]]	
	5 set_input_delay -max	[get_clocks clk_in_100mhz] 4.500	0 [get_ports din_x[0]] -	5	set_output_delay -max	[get_clo	cks clkout] 0.500	[get_ports multout_ab[13	1]	
	6 set_input_delay -min	[get_clocks clk_in_100mhz] 1.000	0 [get_ports din_x[0]] -	6	set_output_delay -min	[get_clo	cks clkout] -0.500	[get_ports multout_ab[13	0]	
	7 set_input_delay -max	faet clocks clk in 100mbz1 4 500	L, [get_ports din_y[0]] -	7	set_output_delay -max	[get_clo	cks clkout] 0.500	[get_ports multout_ab[12	1]	
	8 set_input_delay -min	Input dolovo	[get_ports din_y[0]] ·	8	set_output_delay -min	[get_cld		b[12]]	
	9 set_input_delay -max	input delays	[get_ports din_a[1]] -	9	set_output_delay -max	[get_clo	Output	delays]]	
	10 set_input_delay -min	[get_clocks clk_in_100mhz] 1.000	0 [get_ports din_a[1]] -	10	set_output_delay -min	[get_cld		gor_pone manoar_ab[11]]	
	11 set_input_delay -max	[get_clocks clk_in_100mhz] 4.500	0 [get_ports din_b[1]] -	11	set_output_delay -max	[get_clo	cks clkout] 0.500	[get_ports multout_ab[10	0]	
	12 set_input_delay -min	[get_clocks clk_in_100mhz] 1.000	0 [get_ports din_b[1]] -	12	set_output_delay -min	[get_clo	cks clkout] -0.500	[get_ports multout_ab[10	1]	
	13 set input delay -max	[get_clocks clk_in_100mhz] 4.500	0 [get_ports_din_x[1]] -	13	set_output_delay -max	[get_clo	cks clkout] 0.500	[get_ports multout_ab[9]		
	14 set input delay -min	[get_clocks.clk_in_100mhz] 1.000	0 [get ports din x[1]] -	14	set output delay -min	[get_clo	cks clkout] -0.500	[get ports multout ab[9]		
	15 set input delay -max	[get clocks clk in 100mhz] 4.500	0 [get ports din y[1]] -	15	set output delay -max	[get clo	cks clkout] 0.500	[get ports multout ab[8]		
	16 set input delay -min	[aet clocks clk in 100mhz] 1.000	0 [get ports din v[1]] -	16	set output delay min	faet clo	cks clkout] -0.500	[get_ports multout_ab[8]		
	17 set input delay max	[get clocks clk in 100mhz] 4.500	0 [get ports din a[2]] -	17	7 set output delay max	faet clo	cks clkout] 0.500	[get ports multout ab[7]		
	18 set input delay -min	[get clocks clk in 100mhz] 1.000	0 [get ports din a[2]] -	18	3 set output delay -min	[get clo	cks clkout] -0.500	[get ports multout ab[7]		
	19 set input delay max	[get clocks clk in 100mhz] 4.500	0 [get ports din b[2]] - 🗸	19	et output delay -max	[get clo	cks clkout] 0.500	[get ports multout ab[6]		~
]	<			<			•1			>

© 2009 Altera Corporation Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

81

Report Unconstrained Paths (report_ucp)

0	Report ×	Unconstrained Output Ports		
	TimeQuest Timing Analyzer Summary		Output Port	Comment
L	Unconstrained Paths	1	multout_ab[15]	No output delay, min/max delays, or false-path exceptions found
L	Clock Chatre Commany	2	multout_ab[14]	No output delay, min/max delays, or false-path exceptions found
L	Clock Status Summary	3	multout_ab[13]	No output delay, min/max delays, or false-path exceptions found
L	Unconstrained Input Ports	4	multout_ab[12]	No output delay, min/max delays, or false-path exceptions found
L	Unconstrained Putput Ports	5	multout_ab[11]	No output delay, min/max delays, or false-path exceptions found
L	Unconstrained Input Port Paths	6	multout_ab[10]	No output delay, min/max delays, or false-path exceptions found
L	Unconstrained Output Port Paths	7	multout_ab[9]	No output delay, min/max delays, or false-path exceptions found
L	Hold Analysis	8	multout_ab[8]	No output delay, min/max delays, or false-path exceptions found
L		9	multout_ab[7]	No output delay, min/max delays, or false-path exceptions found
L		10	multout_ab[6]	No output delay, min/max delays, or false-path exceptions found
L		11	multout_ab[5]	No output delay, min/max delays, or false-path exceptions found
L	📆 Unconstrained Output Port Paths	12	multout_ab[4]	No output delay, min/max delays, or false-path exceptions found
		12	ALLER ALLER DI	Real and an address and descent defenses and before a set. An experimental set of the se

- Same report as before used for unconstrained clocks (Clock Status Summary report)
- Setup and Hold Analysis folders list unconstrained I/O ports and paths

© 2009 Altera Corporation

Verifying Clocks & I/O Timing

Use Setup & Hold Summary reports to check worst slack for each clock

"Did I make it or did I not make it?"

- Positive slack displayed in black, negative in red
- Obtaining summary reports
 - Use create_timing_summary Tcl command
 - TimeQuest folder of Compilation Report
 - Run Report Setup Summary & Report Hold Summary reports from Tasks pane or Reports menu

For detailed slack/path analysis

- Run Report Timing from Tasks pane or Constraints menu
- Use report_timing command

© 2009 Altera Corporation

SDC Timing Constraints

- Clocks
- I/O
- False paths
- Multicycle paths

Timing Exceptions: False Paths

Logic-based

- Paths not relevant during normal circuit operation
- e.g. Test logic, static or quasi-static registers
- Timing-based
 - Paths intentionally not analyzed by designer
 - e.g. Bridging asynchronous clock domains using synchronizer circuits
- Must be marked by constraint to tell TimeQuest to ignore them

Two Methods to Create False Paths

set_false_path command

- Use when particular nodes are involved
- Examples
 - All paths from an input pin to a set of registers
 - All paths from a register to another clock domain

set_clock_groups command

- Use when just clock domains are involved

set_false_path Command

- Indicates paths that should be ignored during fitting and timing analysis
- Options
 - [-fall_from <clocks>]
 - [-rise_from <clocks>]
 - [-from <names>]
 - [-through <names>]
 - [-to <names>]
 - [-fall_to <clocks>]
 - [-rise_to <clocks>]
 - [-setup]
 - [-hold]
 - <targets>

set_false_path Notes

- -from & -to: Use to specify source & target nodes
 - Target nodes can be clocks, registers, ports, pins or cells
 - For registers, -from should be source register clock pin
 - Specify a clock name to constrain all paths going into or out of its domain
 - Constrains both rising and falling edge clock transitions
 - More efficient than specifying individual nodes
- -rise_from & -fall_from: Use to indicate clocks for the source node & whether constraint is for a rising or falling edge clock transition; *not in GUI*
- -rise_to & -fall_to: Use to indicate clocks for destination node & direction of transition; not in GUI
- -setup & -hold: Use to apply false paths to only setup/recovery or hold/removal analysis; not in GUI

Set False Path (GUI)

Set False Path	
From:	[get_clocks {clk}]
Through:	
To:	[get_clocks {clkx2}]
SDC command:	set_false_path -from [get_clocks {clk}] -to [get_clocks {clkx2}]
	Insert Cancel Help

False Path Example 1

Simple synchronizer circuit between two asynchronous clock domains

set_false_path -from [get_pins reg1|clk] \
 -to [get_pins reg2|datain]

False Path Example 2

Cutting analysis of inserted test logic

set_false_path -fall_from clk1 \
 -to [get_pins test_logic|*|datain]

set_false_path -from [get_pins test_logic|*|clk] \
 -to [get_pins test_logic|*|datain]

set_false_path -from [get_pins test_logic|*|clk] \
 -to [get_ports test_out]

风店?么.

set_clock_groups Command

- Tells fitter and timing analyzer to ignore ALL paths between specified clock domains
 - Great for clock muxes
 - Equivalent to setting false paths (-from & -to) on all paths between domains

Options

[-asynchronous | -exclusive] -group <clock name> -group <clock_name> [-group <clock name>]...

set_clock_groups Notes

-group: each group of clock names is asynchronous to other clock groups

- e.g. set_clock_group -group {clkA clkB} \
 -group {clkC clkD}

- -asynchronous: no phase relationship, but clocks active at the same time
- -exclusive: clocks not active at the same time
 - Example: clock muxes

Clock Mux Example 1

create_clock -period 10.0 [get_ports clk_100]
create_clock -period 15.0 [get_ports clk_66]

set_clock_groups -exclusive -group {clk_100} -group {clk_66}

Since clocks are muxed, TimeQuest should not analyze
cross-domain paths as only one clock will be driving the
registers at any one time.

Clock Mux Example 1 (Alternative)

create_clock -period 10.0 [get_ports clk_100]
create_clock -period 15.0 [get_ports clk_66]

set_false_paths -from [get_clocks clk_100] -to [get_clocks clk_66]
set_false_paths -from [get_clocks clk_66] -to [get_clocks clk_100]

For an equivalent constraint using false paths, you must # consider paths going both directions

© 2009 Altera Corporation

Clock Mux Example 2

create_clock -name clk_100 -period 10.0 [get_ports clk]
create_clock -name clk_66 -period 15.0 [get_ports clk] -add
create_clock -period 5.0 [get_ports clk_200]

```
set_clock_groups -exclusive -group {clk_100} \
    -group {clk_66} -group {clk_200}
```

```
# As before, never will more that one clock be driving all
# registers
```


Clock Mux Example 3

create_clock -period 10.0 [get_ports clk_100]
create_clock -period 15.0 [get_ports clk_66]

```
create_generated_clock -name clkmux_100 -source clk_100 \
    [get_pins clkmux|clkout]
create_generated_clock -name clkmux_66 -source clk_66 \
    [get_pins clkmux|clkout] -add
```

set_clock_groups -exclusive -group {clkmux_100} -group {clkmux_66}

Since clk_100 is also feeding into the core, now you need to make generated
clocks on the mux outputs and use them for the clock groups

Real World Example: Memory FIFO

FIFO bridging two clock domains; Flags indicate status of **FIFO**

False Paths on FIFO

Verifying False Paths & Groups

False paths

- Perform report timing on specified paths to ensure no results are returned
- Create false paths report
 - report_timing -false_path
 - Tasks pane or Reports menu: Report False Path
- Clock groups
 - Check clock transfers to ensure no paths are returned
 - report_clk_transfers
 - Tasks pane or Reports menu: Report Clock Transfers

SDC Timing Constraints

- Clocks
- I/O
- False paths
- Multicycle paths

Timing Exceptions: Multicycle Paths

- Paths requiring more than one cycle for data to propagate
- Causes timing analyzer to select another latch or launch edge
- Designer specifies number of cycles to move edge
- Logic must be designed to work this way
 - Constraint informs timing analysis how logic is supposed to function

Other Instances to Use Multicycle Paths

- Design does not require single cycle to transfer data (non-critical paths)
 - Otherwise needlessly over-constrain paths
- Clocks are integer multiples of each other with or without offset
 - Demonstrated in Exercise 4
- Clock enables ensuring register(s) not sampling data every clock edge

Multicycle Types (1)

- Destination
 - Constraint based on destination clock edges
 - Moves latch edge backward (later in time) to relax required setup/hold time
 - Used in most multicycle situations
- Source
 - Constraint based on source clock edges
 - Moves launch edge forward (earlier in time) to relax required setup/hold time
 - Useful when source clock is at higher frequency than destination

Multicycle Types (2)

Setup

- Increases the number of cycles for setup analysis
- Default is 1

Hold

- Increases the number of cycles for hold analysis
- Default is 0

*Notes:

- 1) Subtract 1 from the Classic Timing Analyzer hold multicycle value to convert to SDC
- 2) TimeQuest TA also supports negative multicycles

© 2009 Altera Corporation

set_multicycle_path Command

- Indicates by how many cycles the required time (setup or hold) should be extended from defaults
- Options
 - [-start | -end]
 - [-setup | -hold]
 - [-fall_from <clocks>]
 - [-rise_from <clocks>]
 - [-from <names>]
 - [-through <names>]
 - [-to <names>]
 - [-fall_to <clocks>]
 - [-rise_to <clocks>]
 - <targets>
 - <value>

© 2009 Altera Corporation

set_multicycle_path Notes

- -start: Use to select a source multicycle
- -end: Use to select a destination multicycle (default)
- -setup | -hold: Specifies if the multicycle value is applied to the setup or hold calculation
- *<value>*: Cycle multiplier Number of edges by which to extend analysis
- All other options behave similar to set_false_path options

Set Multicycle Path (GUI)

Set Multicycle Path				
From:	[get_clocks {clk}]			
Through:				
To:	[get_clocks {clkx2}]			
Analysis type Setup Hold	Reference clock C Start (launch clock) End (latch clock)			
Value:	2			
SDC command:	set_multicycle_path -from [get_clocks {clk}] -to [get_clocks {clkx2}] -s			
	Insert Cancel Help			

Understanding Multicycle (1)

Standard single-cycle register transfer

*Default hold edge is one edge before/after setup edge

© 2009 Altera Corporation

Understanding Multicycle (2)

Change to a *two cycle setup*; *single cycle hold* transfer

*Default hold edge is one edge before/after setup edge; hold edge moves with setup edge

© 2009 Altera Corporation

Understanding Multicycle (2) (cont.)

Change to a *two cycle setup*; *single cycle hold* transfer

set_multicycle_path -from [get_pins reg1|clk] -to [get_pins reg2|datain] \
 -end -setup 2

*Default hold edge is one edge before/after setup edge; hold edge moves with setup edge

© 2009 Altera Corporation

Multicycle Example

Need to specify that the multiplier is allowed 2 cycles to compute a result # Note this has already been determined by design (half-rate clock enable) set_multicycle_path -from [get_pins {areg*|clk breg*|clk}] \

-to [get_pins outreg* | datain] -end -setup 2

```
set_multicycle_path -from [get_pins {areg*|clk breg*|clk}] \
    -to [get_pins outreg*|datain] -end -hold 1
```

© 2009 Altera Corporation

Reporting Multicycles

	ort Timin	ig: No mul	ticycle					•••
Co	mmand In	fo Summa	ary of Path	ns				
Π	Slack F	rom Node	To Nod	e		Launch Clock	Latch Clock	
1	-2.357 y	_regtwo[2]	OBSE	RVABLE	DATAB_R	EGOUT2 c100	c200	
				No	Mult	ticycle		
			L		man			
<u> </u>								
ath	#1: Set	up slack is	-2.357	(VIOLA)	TED)			
ath Pal	#1: Set	up slack is ry Statistic	s -2.357 os Data	(VIOLA Path	TED) Vaveform			
ath Pai Da	#1: Set th Summa ta Arriva	up slack is ry Statistic al Path	-2.357 _{CS} Data	(VIOLA Path	TED) Vaveform			_
ath Pai Da	#1: Set th Summa ta Arriva Total	up slack is ry Statistic al Path Incr	-2.357 _{CS} Data	(VIOLA Path v Type	Vaveform	Location	Element	~
ath Pal Da	#1: Set th Summa ta Arriv Total 10.000	up slack is ny Statistic al Path Incr 0.000	RF	(VIOLA) Path V Type	Vaveform	Location	Element launch edge time	 •
ath Pal Da ₹	#1: Set th Summa ta Arriva Total 10.000 0.091	up slack is ny Statistic al Path Incr 0.000 0.091	RF	(VIOLA) Path V Type	Vaveform	Location	Element launch edge time clock network delay	
Pal Da 2 3	#1: Set th Summa ta Arriva Total 0.000 0.091 0.341	up slack is ry Statistic al Path Incr 0.000 0.091 0.250	RF	VIOLA Path V Type uTco	TED) Vaveform	Location LCFF_X27_Y7_N7	Element launch edge time clock network delay y_regtwo[2]	
Pal Da 2 3 4	#1: Set th Summa ta Arriva Total 0.000 0.091 0.341 0.341	up slack is ry Statisti al Path 0.000 0.091 0.250 0.000	RF RR	VIOLA Path V Type uTco CELL	TED) Vaveform Fanout 1 1	Location LCFF_X27_Y7_N7 LCFF_X27_Y7_N7	Element launch edge time clock network delay y_regtwo[2] y_regtwo[2]Iregout	
ath Pal 2 3 4 5	#1: Set th Summa Total 0.000 0.091 0.341 0.341 0.341	up slack is ry Statistic Incr 0.000 0.091 0.250 0.000 0.000	RF RR RR RR RR RR	VIOLA Path V Type UTco CELL IC	Fanout	Location LCFF_X27_Y7_N7 LCFF_X27_Y7_N7 LCCOMB_X27_Y7_N6	Element launch edge time clock network delay y_regtwo[2] y_regtwo[2]]regout inst24[inst[2]]datac	
ath Pai Da 2 3 4 5 6	#1: Seb h Summa ta Arriv. Total 0.000 0.091 0.341 0.341 0.341 0.341 0.664	up slack is ry Statistic al Path Incr 0.000 0.091 0.250 0.000 0.000 0.323	-2.357 Data RF R R R R RR RR RR RR RR	VIOLA Path V Type UTco CELL IC CELL	Fanout Fanout 1 1 1 1	Location LCFF_X27_Y7_N7 LCFF_X27_Y7_N7 LCCOMB_X27_Y7_N6 LCCOMB_X27_Y7_N6	Element launch edge time clock network delay y_regtwo[2] y_regtwo[2]lregout inst24[inst[2]]datac inst24[inst[2]]combout	
ath Pa Da 2 3 4 5 6 7	Set ta Arriv. Total 0.000 0.091 0.341 0.341 0.664 0.909	up slack is ry Statistic al Path Incr 0.000 0.091 0.250 0.000 0.000 0.323 0.245	RF RR RR RR RR RR RR RR RR RR RR	VTOLA Path V Type uTco CELL IC CELL IC	Fanout Fanout 1 1 1 1 1 1	Location LCFF_X27_Y7_N7 LCFF_X27_Y7_N7 LCCOMB_X27_Y7_N6 LCCOMB_X27_Y7_N6 LCCOMB_X27_Y7_N0	Element launch edge time clock network delay y_regtwo[2] y_regtwo[2]lregout inst24[inst[2] datac inst24[inst[2] combout inst24[inst11[2] datad	
ath Pa 2 3 4 5 6 7 8	#1: Seb h Summa ta Arriv. 0.000 0.091 0.341 0.341 0.341 0.341 0.664 0.909 1.058	up slack is ry Statistic al Path Incr 0.000 0.091 0.250 0.000 0.323 0.323 0.245 0.149	2.357 28 Data RF R R R R R R R R R R R R R	VTOLA Path V Type UTco CELL IC CELL IC CELL	Fanout Fanout 1 1 1 1 1 1 1 1 1 1	Location LCFF_X27_Y7_N7 LCFF_X27_Y7_N7 LCCOMB_X27_Y7_N6 LCCOMB_X27_Y7_N6 LCCOMB_X27_Y7_N0 LCCOMB_X27_Y7_N0	Element launch edge time clock network delay y_regtwo[2] y_regtwo[2]Iregout inst24[inst[2]Idatac inst24[inst[2]Icombout inst24[inst11[2]Idatad 24[inst11[2]Icombout	
Pal Da 2 3 4 5 6 7 8 Da	#1: Seb h Summa ta Arriv. Total 0.000 0.091 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 1.058	up slack is ry Statistic al Path 0.000 0.091 0.250 0.000 0.323 0.245 0.149 ired Path	RF RR RR RR RR RR RR RR RR RR RR RR	VTOLA Path V Type uTco CELL IC CELL IC CELL	Fanout Fanout 1 1 1 1 1 1 1 1	Location LCFF_X27_Y7_N7 LCFF_X27_Y7_N7 LCCOMB_X27_Y7_N6 LCCOMB_X27_Y7_N6 LCCOMB_X27_Y7_N0 LCCOMB_X27_Y7_N0	Element launch edge time clock network delay y_regtwo[2] y_regtwo[2]lregout inst24[inst[2]ldatac inst24[inst11[2]ldatad 24[inst11[2]lcombout	
Pal Da 2 3 4 5 6 7 8 Da	#1: Seb h Summa ta Arriv Total 0.000 0.091 0.341 0.341 0.341 0.341 0.341 0.664 0.909 1.058 ta Regu Total	up slack is ry Statistic al Path Incr 0.000 0.091 0.250 0.000 0.323 0.245 0.149 Incr	2.357 28 Data RF R R R R R R R R R R R R R	VTOLA Path V Type UTco CELL IC CELL IC CELL Type	Fanout	Location LCFF_X27_Y7_N7 LCFF_X27_Y7_N7 LCCOMB_X27_Y7_N6 LCCOMB_X27_Y7_N6 LCCOMB_X27_Y7_N0 LCCOMB_X27_Y7_N0 LCCOMB_X27_Y7_N0	Element launch edge time clock network delay y_regtwo[2] y_regtwo[2]lregout inst24jinst[2]ldatac inst24jinst11[2]ldatad 24jinst11[2]lcombout	
Pal Da 2 3 4 5 6 7 8 Da	#1: Seb h Summa ta Arriv 0.000 0.091 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.364 0.909 1.058 ta Regu Total 5.000	up slack is ry Statistic al Path Incr 0.000 0.091 0.250 0.000 0.323 0.245 0.149 Incr ired Path Incr 5.000 5.000	2.357 Data RF R R R R R R R R R R R R R	VTOLA Path V Type UTco CELL IC CELL IC CELL IC Type	Fanout Fanout 1 1 1 1 1 1 1 5 Fanout	Location LCFF_X27_Y7_N7 LCFF_X27_Y7_N7 LCCOMB_X27_Y7_N6 LCCOMB_X27_Y7_N6 LCCOMB_X27_Y7_N0 LCCOMB_X27_Y7_N0 LCCOMB_X27_Y7_N0	Element launch edge time clock network delay y_regtwo[2] y_regtwo[2]lregout inst24[inst[2]ldatac inst24[inst11[2]ldatad 24[inst11[2]lcombout Element latch edge time	
Pal Da 2 3 4 5 6 7 8 Da 2 2	Set th Summa ta Arriv. Total 0.000 0.091 0.341 0.341 0.341 0.664 0.909 1.058 ta Require Total 5.000 5.136	up slack is ry Statistii al Path Incr 0.000 0.091 0.250 0.000 0.323 0.245 0.149 ired Path Incr 0.3149	RF RR RR RR RR RR RR RR RR RR RR RR RR R	VYTOLAT Path V Type UTco CELL IC CELL IC CELL Type	Fanout Fanout 1 1 1 1 1 1 1 5 Fanout	Location LCFF_X27_Y7_N7 LCFF_X27_Y7_N7 LCCOMB_X27_Y7_N6 LCCOMB_X27_Y7_N6 LCCOMB_X27_Y7_N0 LCCOMB_X27_Y7_N0 LCCOMB_X27_Y7_N0 LCCOMB_X27_Y7_N0	Element launch edge time clock network delay y_regtwo[2] y_regtwo[2]lregout inst24linst[2]ldatac inst24linst[2]lcombout inst24linst11[2]ldatad 24linst11[2]lcombout Element latch edge time clock network delay	

© 2009 Altera Corporation

Reporting Multicycles

Report Timing: set_multicycle_path												
Command Info Summary of Paths												
	Slack	From Node To Node Launch Clock Latch Clock										
1	2.643	y_regtwo[2]	OBSE	RVABLEDA	TAB_REG	OUT2 c100 c200						
Same path with Setup Multicycle = 2												
Path	Path #1: Setup slack is 2.643									atł	h#1: Setup slack is 2.	.643
Pa	Path Summary Statistics Data Path Waveform									Pa	th Summary Statistics	Data Path Waveform
Da	ta Arriv	al Path									Property	Value
	Total	Incr	RF	Туре	Fanout	Location	Element	^		1	From Node	y_regtwo[2]
	0.000	0.000	$\mathbf{>}$				launch edge time			2	To Node	ABLEDATAB_REGOUT2
2	0.091	0.091	R				clock network delay	Ξ	3	3	Launch Clock	c100
3	0.341	0.250		uTco	1	LCFF_X27_Y7_N7	y_regtwo[2]			4	Latch Clock	c200
4	0.341	0.000	BB	CELL	LL 1 LCFF_X27_Y7_N7 y_regtwo[2]/regout			k	5	Multicycle - Setup End	2	
5	0.341	0.000	RR	IC	1	LCCOMB_X27_Y7_N6	inst24 inst[2] datac			6	Data Arrival Time	7.446
6	0.664	0.323	RR	CELL	1	LCCOMB_X27_Y7_N6	inst24 inst[2] combout			7	Data Required Time	10.089
7	0.909	0.245	RR	IC	1 LCCOMB_X27_Y7_N0 inst24[inst11[2]]datad					8	Slack	2.643
8	1.058	0.149 RR CELL 1 LCCOMB_X27_Y7_N0 inst24[inst11[2]]combout										
9	1.303	0.245	RR	IC	1	LCCOMB_X27_Y7_N26	inst24 inst12[2] datad					
10	1.452	0.149	RR	CELL	1	LCCOMB_X27_Y7_N26	inst24/inst12[2]/combout					
11	1.700	0.248	RR	IC	1	LCCOMB_X27_Y7_N10	inst24 inst13[2] datad	~				
<												
Data Required Path												
	Total	Incr	RF	Туре	Fanout	Location	Element					
	10.000	10.000	Dr				latch edge time					
2	10.136 10.089	0.136 -0.047	R	uTsu	Lato by	ch edge extended one destination	clock network delay	12				
,						clock cycle						

© 2009 Altera Corporation

Timing Analysis Agenda

- TimeQuest basics
- Timing constraints
- Example

DDR Input Example

- What constraints do you need?
- Clock
- Input delay maximum & minimum
 - Use source-synchronous methodology

ADERA.

© 2009 Altera Corporation

DDR Input Example

- What's different about this circuit than prior examples?
- Rising & falling edge input registers from same input port
 Registers have ½ clock period for required time

DDR Input Example

create_clock -period 6 [get_ports clk]

Rising edge clock constraint
set_input_delay -clock clk -max [expr 6 / 2 - 0.5] datain
set_input_delay -clock clk -min 0.5 datain

DDR Reporting

- Use report_timing Command
- Must check all rising & falling edge transitions
 - Two data valid windows to check
 - One from a rising edge source clock
 - One from a falling edge source clock
 - Use rise_from, rise_to, fall_from, fall_to

Timing Analysis Summary

- Timing constraints are very important in FPGA/CPLD design
- Use timing constraints to tell fitter & timing analyzer how logic is designed to function
- SDC provides an easy-to-use, standard interface for constraining design
- See the Quartus II Handbook: Volume 3, Section II, for more information about timing analysis

Reference Documents

- Quartus II Handbook, Volume 3, Chapter 7 The Quartus II TimeQuest Timing Analyzer <u>http://www.altera.com/literature/hb/qts/qts_qii53018.pdf</u>
- Quick Start Tutorial

http://www.altera.com/literature/hb/qts/ug_tq_tutorial.pdf

Cookbook

- <u>http://www.altera.com/literature/manual/mnl_timequest</u> <u>cookbook.pdf</u>

Reference Documents

- SDC and TimeQuest API Reference Manual
 - <u>http://www.altera.com/literature/manual/mnl_sdctmq.p</u>
 <u>df</u>
- AN 481: Applying Multicycle Exceptions in the TimeQuest Timing Analyzer
 - http://www.altera.com/literature/an/an481.pdf
- AN 433: Constraining and Analyzing Source-Synchronous Interfaces
 - http://www.altera.com/literature/an/an433.pdf

Learn More Through Technical Training

Instructor-Led Training

With Altera's instructor-led training courses, you can:

>Listen to a lecture from an Altera technical training engineer (instructor)

Complete hands-on exercises with guidance from an Altera instructor

>Ask questions & receive real-time answers from an Altera instructor

>Each instructor-led class is one or two days in length (8 working hours per day).

Online Training

With Altera's online training courses, you can:

> Take a course at any time that is convenient for you

> Take a course from the comfort of your home or office (no need to travel as with instructor-led courses)

Each online course will take approximate one to three hours to complete.

http://www.altera.com/training

View training class schedule & register for a class

© 2009 Altera Corporation

Other Quartus II Design Series courses

- Quartus II Software Design Series: Foundation
 - Project creation and management
 - Design entry methods and tools
 - Compilation and compilation results analysis
 - Creating and editing settings and assignments
 - I/O planning and management
 - Introduction to timing analysis with TimeQuest
- Quartus II Software Design Series: Verification
 - Basic design simulation with ModelSim-Altera
 - Power analysis
 - Debugging solutions
- Quartus II Software Design Series: Optimization
 - Incremental compilation
 - Quartus II optimization features & techniques

© 2009 Altera Corporation

Altera Technical Support

- Reference Quartus II software on-line help
- Quartus II Handbook
- Consult Altera applications (factory applications engineers)
 - MySupport: <u>http://www.altera.com/mysupport</u>
 - Hotline: (800) 800-EPLD (7:00 a.m. 5:00 p.m. PST)
- Field applications engineers: contact your local Altera sales office
- Receive literature by mail: (888) 3-ALTERA
- FTP: <u>ftp.altera.com</u>
- World-wide web: <u>http://www.altera.com</u>
 - Use solutions to search for answers to technical problems
 - View design examples

© 2009 Altera Corporation Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation 126

