

Quartus II Software Design Series : Optimization

Optimization Techniques – Timing Optimization

Timing Optimization

- General Recommendations
- Analyzing Timing Failures
- Solving Typical Timing Failures

General Recommendations

- Clocks
- I/O
- Asynchronous Control Signals

Many of these suggestions are found in Timing **Optimization Advisor & Quartus II Handbook**

Clocks

Optimize for Speed

- Apply globally
- Apply hierarchically
- Apply to specific clock domain
- Enable netlist optimizations

Enable physical synthesis

Global Speed Optimization

- Select speed
 - Default is balanced
 - Area-optimized designs may also show speed improvements
- May result in increased logic resource usage

ettings - demo_design					
Category:					
General	Analysis & Synthesis Settings				
- Files					
Libraries	Specify options for analysis & synthesis. These options control Quartus II Integrated Synthesis and do not affect VQM or EDIF netlists unless WYSIWYG primitive resynthesis is enabled.				
Device					
⊕ Operating Settings and Conditions					
Compilation Process Settings	Optimization Technique	Auto Global Options (MAX Devices Only)			
- Early Timing Estimate	© Speed	Clock			
Incremental Compilation	C Balanced	🔽 Output Enable			
- Analysis & Synthesis Settings	C Area	Register Control Signals			
VHDL Input Verilog HDL Input	Create debugging nodes for IP co	res			

© 2009 Altera Corporation

Individual Optimization

- Optimization Technique logic option
 - Use Assignment Editor or Tcl to apply to hierarchical block
- Speed Optimization Technique for Clock Domains logic option
 - Use Assignment Editor or Tcl to apply to clock domain or between clock domains

Synthesis Netlist Optimizations

Further optimize netlists during synthesis

Types

- WYSIWYG primitive resynthesis
- Gate-level register retiming

ettings - demo_design					
Category: General Files Libraries Device Operating Settings and Conditions Compilation Process Settings EDA Tool Settings Analysis & Synthesis Settings VHDL Input Verilog HDL Input Default Parameters	Synthesis Netlist Optimizations Specify options for performing netlist optimizations during synthesis. Specify options for performing netlist optimizations during synthesis. Specify options for performing netlist optimization technique specified in Analysis & Synthesis settings) Specify options for performing to trade off Tsu/Tco with Fmax Created/modified nodes				
Synthesis Netlist Optimizations	Created/modified nodes noted in Compilation Report				

© 2009 Altera Corporation

WYSIWYG Primitive Resynthesis

- Unmaps 3rd-party atom netlist back to gates & then remaps to Altera primitives
 - Not intended for use with integrated synthesis
- Considerations
 - Node names may change
 - 3rd-party synthesis attributes may be lost
 - Preserve/keep
 - Some registers may be synthesized away

© 2009 Altera Corporation

Gate-Level Register Retiming

- Moves registers across combinatorial logic to balance timing
- Trades between critical & non-critical paths
- Makes changes at gate level

Physical Synthesis

- Re-synthesis based on fitter output
 - Makes

 incremental
 changes that
 improve results
 for a given
 placement
 - Compensates for routing delays from fitter

General	Physical Synthesis Optimizations
Files Libraries	Specify options for performing physical synthesis optimizations during fitting.
Device Operating Settings and Conditions Compilation Process Settings EDA Tool Settings Analysis & Synthesis Settings Fitter Settings Physical Synthesis Optimizations Timing Analysis Settings Assembler Design Assistant SignalTap II Logic Analyzer Logic Analyzer Interface Simulator Settings PowerPlay Power Analyzer Settings	Physical synthesis for performance Perform physical synthesis for combinational logic Perform automatic asynchronous signal pipelining Physical synthesis for registers Perform register duplication Perform register retiming Physical synthesis for fitting Perform physical synthesis for combinational logic Perform physical synthesis for combinational logic Perform logic to memory mapping Physical synthesis effort
	Normal (derault; increases compilation time two to three times) Extra (should improve design performance; increases compilation time) Fast (may reduce performance gains; decreases compilation time) Description:
	specifically allowing the mapping of logic and registers into unused memory blocks during fitting to achieve a fit.

© 2009 Altera Corporation

Physical Synthesis

- Types
 - Targeting performance:
 - Combinational logic
 - Asynchronous signal pipelining
 - Register duplication
 - Register retiming
 - Targeting fitting
 - Physical synthesis for combinatorial logic
 - Logic to memory mapping

Effort

- Trades performance vs. compile time
- Normal, extra or fast
- New or modified nodes appear in Compilation Report

Combinational Logic

Swaps look-up table (LUT) ports within LEs to reduce critical path LEs

Asynchronous Control Signals

- Improve Recovery & Removal Timing
- Make control signal non-global
 - Project-wide
 - Assignments \Rightarrow Settings \Rightarrow Fitter Settings \Rightarrow More Settings
 - Individually
 - Set Global Signal logic option to Off
- Enable "Automatic asynchronous signal pipelining" option (physical synthesis)

Asynchronous Signal Pipelining

Adds pipeline registers to asynchronous clear or load signals in very fast clock domains

© 2009 Altera Corporation

Duplication

High fan-out registers or combinatorial logic duplicated & placed to reduce delay

© 2009 Altera Corporation

Register Retiming

- Uses fewer registers than pipelining
 - Trade off the delay between timing-critical and non-critical paths
 - Reduce switching
 - Does not change logic functionality

Timing Optimization

- General Recommendations
- Analyzing Timing Failures
- Solving Typical Timing Failures

Analyzing Timing Failures

- Typical synchronous path
 - Registers can be internal or external to FPGA

Typical Timing Errors

Clock delays (T_{clk1} or T_{clk2})

- Ripple/gated clocks
- Non-global routing

Data path delay (T_{data})

- Fan-out
- Too many logic levels
- Poor placement
- Physical limitations

Exploring Failures in Quartus II Software

Technology Map Viewer

Graphically shows number of logic levels

- Chip Planner
 - Graphically shows placement

TimeQuest path analysis

- Highlights clock/path delays
- Highlights fan-out
- Highlights number of logic levels
- And just about everything else

© 2009 Altera Corporation

- Accessing Technology Map Viewer
 - Right-click in TimeQuest report and choose Locate Path or Locate Endpoints
- View number of logic levels in failing paths

© 2009 Altera Corporation

Chip Planner

- Accessing Chip Planner
 - Right-click in TimeQuest report and choose Locate Path or Locate Endpoints
- View placement of nodes in timing path as well as chosen routing

TimeQuest Path Analysis

	nterco De	onnect lay			/	Logic Delay	Clock Delay	
D	ata Arriv	al Path			~ /			
	Total	Incr	RF	Туре	Fanout	Location	Element	
1	0.000	0.000					launch edge time	
2	0.000	0.000	R				clock network delay	
3	1.800	1.800	R	iExt	1	PIN_26	in1	
4	2.642	0.842	RR	CELL	1	IOC_X0_Y5_N2	in1 COMBOUT	
5	7.399	4.757	RR	IC	1	LCCOMB_X1_Y4_N14	inst4 DATAC	
6	7.670	0.271	BB	CELL	1	LCCOMB_X1_Y4_N14	inst4 COMBOUT	th
7	7.670	0.000	RR	IC	1	LCFF_X1_Y4_N15		
8	7.754	0.084	RR	CELL	1	LCFF_X1_Y4_N15	inst De	ays
D	ata Requ	ired Path	K.					
	Total	Incr	RF	Туре	Fanout	Location	Element	
1	10.000	10.000					latch edge time	
2	10.073	0.073	B				clock network delay	
3	10.109	0.036	1	uTsu	1	LCFF_X1_Y4_N15	inst	

Provides ALL detailed information pertaining to timing path

© 2009 Altera Corporation

Further Path Analysis

- Always start with worst slack path(s)
 - Fixing worst path(s) may give Fitter freedom to fix other failing paths
- In TimeQuest reports, list top 50-100 failing paths and look for common source, intermediate or destination nodes
 - Sometimes start or end nodes are bits of same bus
 - Sometimes paths with different source or destination nodes have common intermediate nodes

Timing Optimization

- General Recommendations
- Analyzing Timing Failures
- Solving Typical Timing Failures

Solving Typical Timing Failures

We'll look at some cases of timing failures, how to identify them and possible solutions. It is possible for you to have several at once.

- Too many logic levels 1)
- Fan-out signals 2)
- Conflicting physical constraints 3)
- Conflicting timing assignments 4)
- **Tight timing requirements** 5)

Case 1) Too Many Logic Levels

Increases T_{data}, thus increasing data arrival time

How to verify

- Technology Map Viewer on failing path
- TimeQuest detailed path analysis

Case 1) Technology Map Viewer

Right-click on failing path and select Locate Endpoints or Path

This path has 8 levels of logic

© 2009 Altera Corporation Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

30

Case 1) TimeQuest

Note number of levels of logic in data arrival path

Pa	th	#1: Sla	ck is -3.0	069 (VI	OLATED)						
		111210			000	- 010		Path Delay Stats			
SLACK: -3.069 IIS (VIOLATED)											
Pa	Path Summary										
	Property Value From Node iFF1										
1											
2	To Node iFF2								Type [Deray (bs)]		
3	3 Launch Clock CLK								IC [5184] (67%) Cell [2548] (32%)		
4	4 Latch Clock CLK								0011[2040] (0270)		
5	Da	ata Arriva	l Time	11.39	98						
6	Data Required Time 8.329										
7	Sla	ack		-3.06	9 (VIOLATI	ED)					
Da	ata	ta Arrival Path									
	17	tal	Incr	BF	Type	Fanout	Location	Element			
1	10	000	0.000					launch edge time			
2	3	362	3.362	R				clock network delay			
3	3	666	0.304		uTco	1	LCFF_X47_Y49_N19	iFF1			
4	3	666	0.000	RR	CELL	1	LCFF_X47_Y49_N19	iFF1 regout			
5	3	666	0.000	RR	IC	1	LCCOMB_X47_Y49_N18	inst1~18 datac			
6	4)59	0.393	RR	CELL	1	LCCOMB_X47_Y49_N18	inst1~18 combout			
7	4	1 16	16 0.357 RR IC 1		LCCOMB_X47_Y49_N8	inst2ldatad					
8	4	4 522 0.206 RR CELL 1 5 598 1.076 RR IC 1		1	LCCOMB_X47_Y49_N8	18 inst2[combout 116 inst5[datad					
9	5			1	LCCOMB_X47_Y46_N16						
10) 5	304	0.206	RR	CELL	1	LCCOMB_X47_Y46_N16	inst5 combout			
11	6	574	0.670	RR	IC	1	LCCOMB_X47_Y45_N16	inst6ldatac			
12	10		ad Datk	100	ICELL	11		linalEloombout			
	Ĩ,	Required Path				Esperat	Logation	Floment			
1	1 I Deal		F 000	nr	Type	ranout	Location	Listele entre liste			
2		000	3.000	D				alcok potwork delaw			
4	8.289 3.289 H			1	LCEE VAT V29 N19	CIOCK NELWOIK DEIDY					

Case 1) Possible Solutions

- Add multi-cycle assignments if design allows
- Add pipeline registers
 - Reduces logic levels _
 - Adds latency
- Enable register retiming (physical synthesis)
 - Redistributes logic around registers reducing _ number of levels
 - Increases compile time
- Recode logic to be more efficient
 - Reduces logic levels
 - May need to focus on implementation

© 2009 Altera Corporation

Case 1) Pipeline Registers

Add pipeline registers to reduce T_{data}

© 2009 Altera Corporation

Case 1) Focus on Implementation

- HDL coding decisions will greatly impact resulting synthesis
 - May need to code with resulting synthesis in mind
- See Quartus II handbook chapter, "Recommended HDL Coding Styles"
- Great material on HDL coding

Tip #1 - Reduce Embedded IFs

- Don't embed IF statements
 - Use CASE statements instead

VHDL

```
-- Too many embedded IF statements
process(A, B, C, D, E, F, G, H)
begin
   if A = '1' then
      siq out <= 1;
   elsif B = '1' then
      sig out <= 2;
   elsif C = '1' then
      sig out <= 3;
   elsif D = '1' then
      sig out <= 4;
  elsif E = '1' then
      siq out <= 5;</pre>
   elsif F = '1' then
      siq out <= 6;</pre>
   elsif G = '1' then
      sig out <= 7;
  elsif H = '1' then
      siq out <= 8;</pre>
   else
      siq out <= 9;</pre>
   end if:
end process;
```

Verilog

```
// Too many embedded IF statements
always @(*)
begin
   if (A)
      siq out <= 1;
   else if (B)
      sig out <= 2;
   else if (C)
      sig out <= 3;
   else if (D)
      sig out <= 4;
   else if (E)
       siq out <= 5;</pre>
   else if (F)
      siq out <= 6;</pre>
   else if (G)
      siq out <= 7;</pre>
   else if (H)
      siq out <= 8;</pre>
   else
      siq out <= 9;</pre>
end
```

© 2009 Altera Corporation

Tip #1 - Reduce Embedded IFs (cont.)

Resulting hardware interpretation

Tip #2 - Use System Verilog Unique Case

- Verilog CASE implies one-to-many relationship
- Verilog CASE statement is implemented as a priority encoder
 - i.e. embedded IF statements
- System Verilog is a superset of Verilog
- Use "unique" qualifier to prevent priority encoder

Unique and Priority

- unique and priority keywords apply to case statements or if/else chains
- unique implies non-overlapping case items or conditional expressions
- priority implies just the opposite

© 2009 Altera Corporation

Enabling SystemVerilog-2005

Source-level control (for IP etc)

// synthesis VERILOG_INPUT_VERSION SYSTEMVERILOG_2005

module(input byte a, b, output logic);

Per-file basis

set_global_assignment -name VERILOG_FILE -rev SYSTEMVERILOG_2005

© 2009 Altera Corporation

Tip #3: CASE synthesis directives

Don't use synthesis directives

- parallel_case
- full_case

Great paper discusses the perils of CASE synthesis directives

"full_case parallel_case",the Evil Twins of Verilog Synthesis

• (<u>http://www.sunburst-</u> <u>design.com/papers/CummingsSNUG1999Boston_FullParallelCase.pdf</u>)

Case 2) Fan-Out Signals

- Timing failures from fan-out are more often a matter of where than of how many
 - High fan-out in itself can force nodes to spread out or can result in slow routing
 - Increases routing delay and thus T_{data}
 - Proximity is key in FPGAs & newer CPLDs
- Typical problem cases:
 - Memory control signals
 - Clock enables

Case 2) Fan-Out Signals (cont.)

How to verify

- Locate high fan-out signals as possible causes
 - TimeQuest path analysis
 - Non-Global High Fan-Out Signals table in Compilation Report (Fitter folder ⇒Resource section)
- Use Chip Planner to verify locations of nodes

Case 2) Timequest

Ρ	ath #1: 5	ack is -0	.580 (¥I	OLATED)			Path Delay Stats	Interconnect Delay		
P	ath Sumn	nary	Non	0.50 1		ATED)				
1 2 3 4	Property Value From Node inst1 To Node le_fifo:inst2lscfifo:scfifo_componentla_fffifo:subfifollpm_ff: Launch Clock CLK Latch Clock CLK				ifo:scfifo_com	ponent a_fffifo:subfifo pn		e [Delay (ps)] 29] (82%) 140] (17%)		
5 6 7	Data Arrival Time 8.935 Data Required Time 8.355 Slack -0.580 (VIOLATED)				[ED]					
D	ata Arriv Total	al Path	PE	Tupe	Fanout	Location	Flement			
1	0.000	0.000	10	турс	1 driout	Location	launch edge time			
2	3.262	3.262	R				clock network delay			
3	3.566	0.304		uTco	1	LCFF_X75_Y38_N1	inst1			
4	3.566	0.000	BB	CELL	4108	DCFF_X75_Y38_N1	inst1 regout			
5	7.995	4.429	RR	IC	1	LCFF_X93_Y36_N7	inst2 scfifo_component subfifo data_node[0][92] dffs[1] aclr			
6	8.935	0.940	RF	CELL	1	LCFF_X93_Y36_N7	le_fifo:inst2lscfifo:scfifo_component a_fffifo:subfifo lpm_ff:data_node[0][92] dffs[1]			
D	ata Regu	ired Patl	1							
	Total	Incr	RF	Туре	Fanout	Location	Element			
1	5.000	5.000					latch edge time			
2	8.315	3.315	R				clock network delay			
3	8.355	0.040		uTsu	1	LCFF_X93_Y36_N7	le_fifo:inst2lscfifo:scfifo_component a_fffifo:subfifo lpm_ff:data_node[0][92] dffs[1]			

Fanout of 4108 with interconnect delay of 4.429 ns

© 2009 Altera Corporation

Case 2) Possible Solutions

- Add multi-cycle assignments if design allows
- Put high fan-out signals on globals
 - Reduces delays
 - Subject to resource availability
 - Global insertion delay may make this option not valid
- Turn on physical synthesis
 - Duplicates logic to reduce fan-out
 - Longer compilation time & higher utilization

Changes T_{data}

Changes T_{data}

© 2009 Altera Corporation

Case 2) Possible Solutions (cont.)

Use max fanout constraints

- Simple to do
- Trial & error process, multiple compiles

Manual duplication of logic

- Reduces fan-out
- Allows user to intelligently control how each copy is used in design
- May be a time intensive process depending on how signal is distributed

Case 2) Global Signals

- Examine Fitter report for global & non-global signals
- Fixed number of global signals in a given device
- Fitter algorithms may autopromote high fan-out signals (see fitter messages)

Case 2) Global Signals

Manually promote signals with global assignment

Thru TCL interface

set_instance_assignment -name GLOBAL_SIGNAL ON -to inst1

Thru GUI

		From	То	Assignment Name	Value	Enabled
	1		@inst1	Global Signal	On	Yes
	2	< <new>></new>	< <new>></new>	< <new>></new>		
l						

© 2009 Altera Corporation

Case 2) Physical Synthesis

Options to try

- Combinational physical synthesis
 - Performs duplication for combinatorial nodes
- Register duplication
- See Quartus II handbook chapter "Netlist Optimizations & Physical Synthesis"
 - Explains features in detail
 - Lists caveats and exceptions

Case 2) MAX_FANOUT Constraint

- Controls the number of destinations so the fan-out count does not exceed the value specified
- Thru TCL interface

set_instance_assignment -name MAX_FANOUT <integer> -to <instance>

Thru GUI

	From	То	Assignment Name	Value	Enabled
1		🐵 inst 1	Maximum Fan-Out	64	Yes
2	< <new>></new>	< <new>></new>	< <new>></new>		

© 2009 Altera Corporation

Case 2) Manual Duplication

- Two methods:
 - Manual duplication in source code 1.
 - Manual Logic Duplication assignment 2.
- Manual Logic Duplication Assignment
 - Duplicates the source node, and uses the new duplicated node to fan out to the destination node

© 2009 Altera Corporation

© 2009 Altera Corporation

Case 3) Conflicting Physical Assignments

Physical location assignments place registers too far apart

Increases T_{data} and setup analysis fails

How to verify

- Chip Planner
 - Locate timing path from TimeQuest

Case 3) Chip Planner

With setup issues, flops are usually too far apart

Why has fitter placed the flops so far apart?

Case 3) Explanation

- Due to conflicting Physical Requirements
- For Example
 - Memory interfaces on either ends of the ___ device
 - Signals feeding both interfaces ____
 - No-Win scenario for Fitter
 - If REG is put near DDR I/F 1, path to DDR I/F 2 fails
 - If REG is put near DDR I/F 2, path to DDR I/F 1 fails

© 2009 Altera Corporation

Case 3) Checks

Which location constraints are interacting?

- i.e. pin, register, etc.

Are registers constrained to IO elements?

- i.e. Fast {Input | Output | Output Enable} Register assignments

Are there LogicLock Regions?

Case 3) Possible Solutions

- Add multi-cycle assignments if design allows
- Re-evaluate all location assignments
 - Simple to do
 - May be limited by design requirements
- Turn on physical synthesis
 - Duplicates logic to reduce fan-out
 - Longer compilation & possibly higher utilization

© 2009 Altera Corporation

Case 3) Possible Solutions (cont.)

Add pipeline registers

- Reduces logic levels
- Adds latency

Manual duplication of logic

Reduces fan-out

© 2009 Altera Corporation

 Long & laborious trial and error process

Changing T_{data}

Changing T_{data}

Case 4) Conflicting Timing Assignments

Fitter can't honor multiple assignments constraining path

- Ex. Setup vs. hold; Clock vs. I/O

How to verify

- Use Chip Planner

Case 4) Chip Planner

With hold issues, flops are usually too close together

Why has fitter placed the flops so close together?

Case 4) Analysis

Due to competing timing assignments

Examining timing constraints that affect path

- Examples
 - set_max_delay vs. set_min_delay
 - Path-based constraint vs. clock constraint

Case 4) Possible Solutions

- Add multi-cycle assignments if design allows
- Re-evaluate all timing assignments
 - Simple to do
 - May be limited by design requirements
- Turn on physical synthesis
 - Duplicates logic to reduce fan-out
 - Longer compilation & possibly higher utilization

© 2009 Altera Corporation

Case 5) Tight Timing Requirements

Fitter can't honor assignments as they are unobtainable

How to verify

- Use TimeQuest to verify path timing after all other cases have been ruled out
 - No fan-out, logic level, timing, skew or location issues

Case 5) Example: Output I/O Failing

- Flop is packed into IO element (best placement)
- Setup timing requirement is very tight
 - Board delays, capacitive loading, etc. _

$$- T_{\text{period}} < (T_{\text{co}} + T_{\text{data}} + T_{\text{CL}} + T_{\text{su}})$$

How do you achieve timing?

63

Case 5) Slack Equations

Setup Slack Equation:

Case 5) Slack Equations (cont.)

Assuming that the board layout was done, we can make the following argument for change:

Setup Slack Equation:

Hold Slack Equation:

Case 5) What Can Be Changed?

T_{su}, T_h, T_{co}, T_{data}, T_{clk1ext}, T_{clk2} are fixed values
Can't change these

We can only change

- Launch/latch edge relationship
- Clock path delay inside the FPGA ($T_{clk1int}$)

Case 5) – Possible Solutions

Add multi-cycle assignments if design allows

Shift source clock

- simple work-around – Pro:
- subject to resource availability – Con:
 - If we shift source clock, we need to add multicycle assignment

Selecting faster clock routing, if available

Changes Launch & Latch Edges

Changes Launch & Latch Edges

Changes T_{clk1int}

© 2009 Altera Corporation

Case 5) Shifting T_{clk1int}

- Steal margin from REG0-REG1 timing to make up for shortfall in REG1-REG2 timing
- Use PLL to shift T_{clk1int} by failing amount
 - Launch data earlier on REG1 with respect to input clock

Case 5) Input I/O Paths – shifting T_{clk2int}

Handle similar to example output path

- Re-evaluate input constraint
- Use PLL to shift or delay clock (T_{clk2int}) driving input registers

© 2009 Altera Corporation

Case 5) Important Note on Shifting T_{clk2int}

- The destination clock is a delayed version of the source clock
- By shifting T_{clk2int}, a multi-cycle assignment is needed at the destination

Case 5) Example: Shifting T_{clk2int}

 $F_{destination} = F_{source} + Phase Shift$

Solving Timing Failures Review

- 1) Too many logic levels
- 2) Fan-out signals
- 3) Conflicting physical constraints
- 4) Conflicting timing assignments
- 5) Tight timing requirements
- These are common examples
- Must know and understand design to choose best solution

