
Welcome !! & Thank you !!

Questions and Answers are divided into following categories in the respective order.

1) Digital Design Questions with Answers.
2) Circuit Design Questions with Answers.
3) Static Timing Analysis Questions with Answers.
4) Circuit Modelling Questions with Answers.
5) Verilog Questions with Answers.
6) Misc. Questions with Answers.

Digital Design Questions & Answers.

Question D1): You can use just a NAND gate, How many ways can you come up with
an inverter ?
Answer D1):
This is a test for your very basic gate understanding. Very crucial, you need to get your
fundamentals in order.

For all such questions, you should start by drawing truth tables. If needed go through
all basic truth tables for inverter, and, or, nand, nor, xor, xnor gates.

Draw the truth table of what you have and the table for what you want to achieve.
Check if you could find simple optimization like following example to get what you need.
If it becomes difficult, next method is to use Karnaugh Map.

We have NAND gate and we need to make INV. Truth tables for both are here.

We can see that when both inputs A & B are ‘0’ the output is ‘1’ and vice-versa, i.e.
when both inputs are ‘1’, the output is ‘0’, which is similar to the INV behavior, hence
one possibility is to short both inputs of NAND to achieve INV. Following are the two
ways to make inverter out of NAND.

If you observe NAND table closely you see that when A input is ‘1’, B input appears

inverted at output. Which brings us to other possibility that if tie A input of NAND to ‘1’
we get INV.

Figure 1. Two input NAND gate as inverter.

Question D2): Make an INVERTER using only 2 input NOR gates.
Answer D2):
Go through similar exercise as we went through in previous question. Following are the
two ways that you get to make inverter out of NOR.

Figure 2. Two input NOR gate as inverter.

Question D3): Make an OR gate, using just NAND gates.
Answer D3):
You need to know the equivalent representations of NOR gates, which we can come up
using De Morgans law.
De Morgans law : =
Which is as shown in the figure below.

Figure 3. De Morgans law.

We need to get an OR gate. We’ll work backwards, hence we’ll start with OR gate and
go through transformation steps using De Morgans law eventually converting to NAND
gates as described below. Following is the sequence of simplification. At the end we’re
left with just NAND and INVERTER, we know from previous questions that we can easily
convert NAND into an INVERTER.

Figure 4. NAND gates as an OR gate

Question D4): Make an INVERTER using a 2 to 1 MUX
Answer D4):

When it comes to dealing with MUXes, remember the equation of a 2:1 MUX. Utilize it
to try and come up with the desired behavior.

Equation of a MUX is :

If we replace A with ‘0’ and B with ‘1’ we get INV like functionality.

You can verify using the truth tables. Following figure describes INVERTER using a 2 to
1 MUX

Figure 5. INV using 2:1 MUX

Question D5): Make an AND gate using 2 to 1 MUX
Answer D5):
Equation of a MUX is :
If we tie B to zero, which is what we do down below. We get

Figure 6. AND using 2:1 MUX

Question D6): Make a NAND gate using 2 to 1 MUX
Answer D6):
In previous two questions we made AND & INVERTER out of 2 to 1 MUX, we can
combine both and come up with NAND gate.

Question D7): Make an OR gate using 2 to 1 MUX
Answer D7):
Equation of a MUX is :
If we tie A to ‘1’, which is what we do down below. We get

Figure 7. OR using 2:1 MUX

Question D8): Make an NOR gate using 2 to 1 MUX

Answer D8):
Equation of a MUX is :
If we tie A to ‘0’, and if we use at input instead of , We get

Figure 8. NOR using 2:1 MUX

Other option is to take MUX OR gate and MUX INVERTER and combine them.

Question D9): Make an XOR gate using 2 to 1 MUX
Answer D9):
Equation of a MUX is :
If we tie to , and if we use at input instead of , We get

Which is equation for XOR gate.

Figure 9. XOR using 2:1 MUX

Question D10): Design a full adder with 2-1 mux
Answer D10): Full Adder can be implemented by two half adder; a half adder can be
implemented by a XOR and AND gate. XOR and AND gate can be implemented by 2:1
MUX.

Question D11): Simplify logic : MUX with D1 input tied to ground, and inverter at the
select input.
Answer D11):

Figure 10. Logic simplification.

Here you can see that = 0 +
So this is just an AND gate.

Question D12): Form a 2 to 1 MUX using only NAND & inverters.
Answer D12):
2 to 1 MUX equation is
We can use DeMorgans law and above mentioned equation to turn it into NAND and
INV gates. Following is the sequence of changes to make it NAND only MUX.

Figure 11. 2:1 MUX using NAND and INV.

Question D13): Form a 2 to 1 MUX using only NOR gates & inverters.
Answer D13):
2 to 1 MUX equation is
Using techniques similar to previous question, we can have following sequence of
transformations to get 2:1 MUX using only NOR gates and INV.

Figure 11. 2:1 MUX using NOR and INV.

Question D14): Can a 2 to 1 MUX be made using less than 3 NOR gates ?
Answer D14):
No

Question D15): Simplify logic in following figure :
Answer D15):
You can examine following circuit carefully and you can see that Out is same as A B
Or A XNOR B. Following is the simplification.

Figure 12. Logic simplification for XNOR and INVs.

There is a corollary to this questions. If you inverter one of the inputs of an XOR gate
resulting structure is XNOR gate and if you invert one of the gate of an XNOR gate,
resulting structure is XOR gate, you can verify using truth tables.

Question D16): What could be the problems after simplifying logic in previous
question ?
Answer D16):
There is a physical design and implementation aspect to the logic minimization or
optimization. Optimized logic output has to be able to drive the load that unoptimized
logic output was driving.

This is true in general with all simplification where we are reducing logic gate counts.

If you’re now driving a large load with just one XNOR gate than you could have a drive
strength issue and you might have to increase the size of the XNOR gate so much that
it defeats the purpose of optimization in first place.

Also if you have implemented XNOR gate using transmission gate/ pass gate devices
you want to have input buffering provided by inverter at the input.

Question D17): Simplify equation
Answer D17):
You need to know the rules of digital design. The rules

Question D18) Build a buffer from a single XOR gate. Build an inverter from single XOR.
Answer D18):
For an XOR gate the boolean equation is following Assuming A,B inputs and O as output

If we make B = 0 in this equation we get

You can do similar exercise and find out that tying other input to ‘1’ will give you
inverter.

Figure 13. BUF and INV using XOR.

Question D19) What is a multiplexer ?
Answer D19):
Multiplexer is a combinational circuit with multiple inputs and single output. It chooses
one of the input signals based on the selector control input and directs it to the single
output.

Question D20) Come up with 3 input NAND gate using minimum number of 2 input
NAND gates.
Answer D20): Three input NAND gate equation can be written as following

 We can rewrite this as following.

This means that we can use a two input NAND gate for input A & B and invert it’s
output and feed output of inverter to one more 2 input NAND gate with C being another
input. We also know that we can form inverter using 2 input NAND gate in two different
ways. Following figure describes the circuit.

Figure 13. 3 Input NAND using 2 input NAND.

Question D21) Come up with an XOR gate using only 2 input mux and inverter.
Answer D21):
2 input XOR function is here :

This means when input A is true, we invert other input B and pass it on to output or
when input A is not true (is ‘0’) we pass other input B as it is. We also know that MUX
function is like following for input A, B and selector S.

If you think of A as the select for a 2 input MUX all we need to do is tie to true input
of MUX and tie B to the other input of MUX. Following figure showing this clearly.

Figure 14. XOR using 2:1 MUX.

Question D22) Design a 4:1 MUX using only 2:1 MUXes ?
Answer D22)
Following is an option to do this, using 3 2:1 MUXes.

 Figure 15. 4:1 MUX Using 2:1 MUXes

Question D23) : Come up with logic that counts number of ‘1’s in a 7 bit wide vector.
You can only use combinational logic.

Answer D23):
Following is one of the ways to come up with such logic.
Input vector is 7 bit wide. To sum up 7 bits we need 3 bits of binary encoded output.
We’ve full adders available. A single full adder can add 3 input bits and generate 2 bits
of binary encoded output.
E.g. a full adder can add 3 bit wide input vector ‘111’ and generate ‘11’ output.
We can pick two full adders and add up 6 bits of the input vector and will end up with
two sets of two bit wide binary encoded data.
E.g. if input vector is ‘1100111’, we can assume two full adders adding up first 6
bits ‘110011’ where first three bits ‘110’ are input to first adder and ‘011’ are input
to second adder. First adder will output ‘10’ (decimal 2) and second adder will also

output ‘10’ (decimal 2), and we need to add up two two bit binary vectors. We can
again employ full adders to do this as we still have to account for the 7th input bit of
the input vector. That can go into the least significant full adder carry-input.
For the above example :
Input vector ‘1100111’
input ‘110’ => full adder => ‘10’ output
input ‘011’ => full adder => ‘10’ output

 10
+10

 100 => output (4)
Now accounting for the seventh input bit ‘1’ as carry into the least significant adder.
 1 <= Carry in.

10
 +10

 101 => Binary encoded decimal 5 which is the input of 1s in input
vector ‘1100111’.

Full adders can be used to add-up 3 input bits at a time. Outputs of first level of full
adders represent the two bit encoded version of the total ‘1’s count, which we need to
add up get the final two digit encoded version of total ‘1’s. Since we need to add up
7 bit input vector, 7th input vector can be used as ‘Carry In’ in the second level of full
adders.

Figure 16. Count number of ‘1’s

Question D24): We have an input vector where on subsequent clock cycles you get
i1,i2,i3,i4 values. We want to output i1,i1+i2,i1+i2+i3 on subsequent clock edges.
You’re given a black box which adds two input vectors and generates one output.
Assume digital block output latency is one clock cycle.
Answer D24):
This question tests your knowledge of digital design with respect to pipelining. Best way
to approach such questions is again, first draw the given input waveform and draw the
required output waveform.

Then start with the given logic and come up with your first best guess of what logic
should look like and start analyzing what resulting output waveform you get with your
initial block of guessed logic. Keep iterating based on your comparison of what you

initially got v/s what is needed.
Following logic will perform the required operation.

Figure 17. Adder state machine with specified delay.

Question D25) : How does this circuit change if adder latency changes to 2 cycles. ?
Answer D25):
Approach this question same as previous question. Remember you don’t necessarily
have to get exact answer. What counts is how you approach the question.

Always keep thinking out loud. Continue spelling out the dialogue that’s going on
in your mind, don’t keep your thoughts to yourself. Interviewer is looking at your
approach, he wants to make sure you’re trying your best to analytical approach such
tough questions.

In this specific example, start with and initial simplistic guess of two clock cycle delay
circuit (back to back flipflops) and draw the initial output waveform. Compare initial
output waveform with the required output waveform and based on differences iterate

more. Many times there isn’t a systematic way to get your answer, you’ve to go trial
and error.

Following logic will perform the required operation.

Figure 18. Adder state machine with more clock delay.

Question D26): Explain the working of a FIFO.
Answer D26):

FIFO is used for high throughput asynchronous data transfer. When you’re sending data
from one domain to another domain and if high performance is required, you can not
just get away with simple synchronizer(Metaflop).

 As you can’t afford to loose clock cycles(In synchronizer you merely wait for additional
clock cycles until you guarantee metastability free operation), you come up with storage
element and reasonably complex handshaking scheme for control signals to facilitate
the transfer.

An Asynchronous FIFO has two interfaces, one for writing the data into the FIFO and
the other for reading the data out of FIFO. It has two clocks, one for writing and the
other for reading.

Block A writes the data in the FIFO and Block B reads out the data from it. To facilitate
error free operations, we have FIFO full and FIFO empty signals. These signals are
generated with respect to the corresponding clock.

Keep in mind that, because control signals are generated in their corresponding
domains and such domains are asynchronous to each other, these control signals have
to be synchronized through the synchronizer !

FIFO full signal is used by block A (when FIFO is full, we don't want block A to write
data into FIFO, this data will be lost), so it will be driven by the write clock. Similarly,
FIFO empty will be driven by the read clock. Here read clock means block B clock and
write clock means block A clock

Asynchronous FIFO is used at places when the performance matters more, when one
does not want to waste clock cycles in handshake and more resources are available.

Figure 19. Asynchronous FIFO.

Question D27): How is FIFO depth/size determined ?
Answer D27):
Size of the FIFO depends on both read and write clock domain frequencies, their
respective clock skew and write and read data rates. Data rate can vary depending on
the two clock domain operation and requirement and frequency. FIFO has to be able to
handle the case when data rate of writing operation is maximum and for read operation
it’s minimum.

Question D28): Come up with a counter circuit which counts from 0 to 2 [0,1,2,0].
Answer D28):
This is a basic circuit which everyone should know. The purpose of this question is to
build background for next question.

For counters you always begin by making truth table with two columns, current state
and next state. In the figure (o) means old state and (n) stands for new state.
Now we can form boolean equations for Qa & Qb.

Old values go into the input of the flip flops and new values are output of flip flops.
Given that we need 3 states, we need two flip flops. Figure 20 is the state transition
table used to come with above mentioned equations. Based on the equation circuit
shown in Figure 21 can be conceived. Waveforms are shown in Figure 22, it can be
seen that Qb or Qa waveform can be used as a divided by ‘3’ clock waveform, just that
it’s not 50% duty cycle. It’s rather 33.33% duty cycle.

Figure 20. State-transition truth table for 0-2 counter

Figure 21. Circuit for 0-2 counter

Figure 22. Clock and data waveforms for 0-2 counter

Question D29): Come up with a frequency divide by 3 clock circuit.
Answer D29):

Any good digital design interviewer, will very likely ask a clock divider circuit question.
Clock divider by odd numbers, especially divide by ‘3’ are tricky circuits to come up
with.

It is a question that is very likely to be asked and there in lies and opportunity for you
to impress your interviewer. Spend enough time to familiarize yourself with clock divider
circuits.

Remember that divide by circuits are some sort of variations of counters. Divide by ‘2’
can be thought of as variation of ‘2’ bit counter. Divide by ‘3’ as ‘3’ bit counter. This
concept was dealt with in previous question. Counters are easy to understand and
build. It is recommended first you read up basics of counter circuits and then try your
couple of counter examples yourself to begin with.

There is a very good paper on clock divider, which describes a systematic way for
coming up with divide by state machine for clocks. Paper can be found here : http://
ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174

If you look at the output of a ‘3’ bit counter, it’s easy to derive a divide by ‘3’ waveform
which has a duty cycle of 33.33%. Again as described in previous question.

It takes a bit trick to get a 50% duty cycle divide by ‘3’ waveform. After experimenting
a bit, came up with following circuit for a divide by ‘3’ clock divider.
You can see that in previous question what we need to do is delay Qa waveform by a
phase and OR it with Qb and we’ll have a 50% duty cycle divide by ‘3’ clock waveform.

That’s exactly what we do in following circuit. We add a latch for delaying output by
a phase, we use p-first latch to provide phase delay and we introduce explicit OR.
Practically we can keep NOR in place of OR.

http://ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174
http://ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174
http://ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174
http://ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174
http://ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174
http://ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174
http://ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174
http://ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174
http://ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174
http://ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174
http://ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174
http://ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174
http://ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174
http://ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174
http://ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174
http://ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174
http://ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174
http://ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174
http://ebookbrowse.com/clock-dividers-made-easy-pdf-d75765174

Figure 23. 50% duty cycle divide by ‘3’ clock generator

Figure 24. 50% duty cycle divide by ‘3’ clock generator waveforms

The paper mentioned earlier describes a way to get a divide by 3 circuit with duty
cycle of 50%. First build a counter which counts from 0 to 2; then generate two enable
signals, one active at time n=0, the other active at n=2; apply the two enable signals to
two FF, the first one triggered on positive edge, the second one triggered on negative
edge and then xor the FF outputs.

Question D30): Design an FSM detecting signal 1101
Answer D30):
For FSM, there no magic trick, you’ve to practice. Practice at least 10 different FSMs
and you’ll get a hang of it.
Following is the FSM that detects sequence 1101. The numbers on transition lines show
input/output. For example, if machines is in S0 state and 0 input arrives, it remains in
S0 state and output 0, hence 0/0. S1 is the accepting state when arrived from S3, that’s
when output is asserted high.

Figure 25. FSM detecting series 1101

Question D31): Given a DC signal how would you make a 50ps pulse? You have a 50ps
inverter available.
Answer D31):
Use an XOR and inverter on one of the inputs.

Question D32): Why do we need TLB ?
Answer D32):
At least, brush up your basics of memory sub systems.
We need TLB to improve virtual address translation speed.

Question D33): What is a page table?
Answer D33):
A page table is the data structure used by a virtual memory system in a computer
operating system to store the mapping between virtual addresses and physical
addresses. Virtual addresses are those unique to the accessing process. Physical
addresses are those unique to the hardware, i.e., RAM.

http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Virtual_address
http://en.wikipedia.org/wiki/Virtual_address
http://en.wikipedia.org/wiki/Virtual_address
http://en.wikipedia.org/wiki/Virtual_address
http://en.wikipedia.org/wiki/Physical_address
http://en.wikipedia.org/wiki/Physical_address
http://en.wikipedia.org/wiki/Physical_address
http://en.wikipedia.org/wiki/Physical_address
http://en.wikipedia.org/wiki/Physical_address
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/Random_Access_Memory
http://en.wikipedia.org/wiki/Random_Access_Memory

Question D34) What is a ring counter ?
Answer D34):
Ring counter is essentially a circular shift register. The output of the last shift register is
fed to the input of the first register.

Question D35): Why are the drawbacks of associativity of Memory?
Answer D35):
With more associativity we need to do wider tag comparison, which means more logic
and more power consumed. So with increasing associativity we increase hit rate, but
the cost is more area and power, also there is a diminishing return after certain point

Circuits Questions and Answers

Question C1): what is CMOS stand for ?
Answer C1) :
Complementary Metal Oxide Semiconductor.

Question C2): What does a delay of a cell/gate depend upon ?
Answer C2):
It mainly depends upon the input pin slope/slew rate and output load.

Question C3): Draw a CMOS transistor circuit for a 2 input NAND gate.
Answer C3):

Figure 26. Two input NAND gate.

Question C4): Which input of 2 input NAND gate is faster. ? Why ?
Answer C4):
Input that is closes to the output node of NAND gate is faster. It’s input A in above
figure. This is because of we assume that the NMOS closest to the Vss is already
turned on than Vss has effectively moved to the source of the NMOS near the output of
the NAND gate (between A & B NMOS) and hence there is less resistive path now.

Question C5): When is the 2 input NAND gate slowest ? Why ?
Answer C5):
2 input NAND gate is slowest when both of the inputs A & B are switching high at the
same time. This is when you can imagine the two NMOS in series combined form a
bigger effective NMOS which is twice as resistive compared to single NMOS and as it’s
more resistive it charges the output slower and is slowest compared to just one of them
turning on.

Question C6): Size transistors of a 2 input NAND gate for equal rise & fall delay
assuming a P/N skew of 2/1
Answer C6):
In general you need to find out which transistors(s) are responsible for switching
output. E.g in following NAND gate, only one of the PMOS would be responsible for
output switching high as opposed to both NMOS needing to turn on for switching
output low. So if PMOS size is 2, we’re looking for NMOS equivalent size of 1 as P/N
ratio is 2/1 in out example. As both NMOS have to turn on, the effective strength of
NMOS is half(assuming both are equal in size). So get effective strength of 1, we need
to have each individual NMOS sized 2. Think of two resistors in series. Same applies if
there were 3 NMOS transistors in series. The equivalent strength would be ⅓ the single
NMOS size.

Figure 27. Two input NAND gate with P/N skew of 2/1.

Question C7): Draw the cross section of a MOSFET. What is saturation region ? How to
bias device as such. Where is the bulk connection? What does it do?

Answer C7):

Figure 28. MOSFET cross section.

Image from wikipedia(http://en.wikipedia.org/wiki/File:N-channel_mosfet.svg)

In saturation, > and > . One way to bias a device into
saturation is to tie the gate and drain together and then raise the gate voltage above

. That way, you're guaranteed to satisfy both conditions. The bulk connection is to
the substrate. You can use a bulk connection to adjust the threshold voltage, via the
body effect

Question C8): Which layers are best used for routing? Why?
Answer C8):

Higher layers are best used for routing. Because higher layers have less RC delay per
micron of length. This is because higher layers have wider wider wires, which are more
capacitive, but have much less resistance, resulting in overall less RC delay.

Question C9): How does a substrate bias (a.k.a. back-gate bias) on a MOS transistor
affect Vt?
Answer C9):
A back-gate(body) bias increases the magnitude of Vt. The mechanism is an increase
in the depletion width of the induced p-n junction under the gate. This uncovers more
fixed charge in the channel region. (The mobile charge gets "pulled" to the substrate
contact.)

Since the uncovered fixed charge has the same sign as the channel inversion charge,
not as much channel inversion charge is needed to balance the charge on the gate. As
a result, some of the inversion charge flows out the source terminal, so the channel
isn't as inverted as it was prior to applying the substrate bias.

Therefore, the gate voltage needs to increase in magnitude to restore the previous level
of channel inversion. For NMOS, with the decrease of Vb, Vt increases.

Question C10): Why power routes are routed in the top metal layers?
Answer C10):
This is not always true, but in general top metal layers are less resistive and hence IR
drop is less in power distribution network. Also routing power wires in higher layers in
top layers can free up lower metal layers to ease routing congestion in lower layers.
Bigger the concern of IR drop more power routes are needed in all layers.

Question C11): What are the ways to speed up a standard cell ?
Answer C11):
Delay of the standard cell depends upon three main factors. Input slope, output load
and drive strength. If you increase input slope by increasing the drive strength of the
driver, the cell speeds up. If you reduce load at the output of the cell, cell speeds up. If
you increase the width of the cell, cell speeds up. A cell with lover sub-threshold voltage
is faster than a nominal cell.

Question C12): How do you reduce noise or glitch ?
Answer C12):
First thing you ask when you’ve noise or glitch issue is whether you can tolerate the
glitch or not. If you receiver is non-storage element, e.g. static gate like inverter or
buffer, they attenuate the glitch/pulse(based on their skew) and noise glitch becomes

tolerable by the time it reaches flop/latch.

Normally cross coupling from wires is biggest contributor of the noise glitch so
increasing spacing to attacker helps. If the driver of the attacker is over-sized it helps
to reduce the cross coupling, Also if the victim node driver is poorly sized, up-sizing
the driver helps. Many times logical filtering, i.e. realizing the logical mutex conditions
between attacker and victim helps filter out attackers.

Question C13): Explain short circuit current.
Answer C13):
In practice, because of finite input signal rise and fall times, there results a direct
current path between the supply and ground. This exists for a short period of time
during switching of the gate.

Figure 29. Short-circuit current.

Question C14): How do you size a ring oscillator ?
Answer C14):
In a simple ring oscillator design all inverters are sized same for achieve equal delay
through them. Frequency of the ring oscillator is given by following equation which

depends upon the delay through the inverters.

To speed up frequency we can increase the size of inverters to speed them up and
to reduce the frequency we can down size the inverters to slow them down. Here f is
the ring oscillator frequency, n is the number of inverters(stages) and td is the delay
through inverter, which is assumed same for all.

Question C15): Why does digital gates run slower at higher temperature.
Answer C15):
As temperature increases the mobility of the carrier decreases, which causes active/
switching current (Ion) to decrease, hence gates run slower at higher temperature.

Question C16): What happens to gate leakage at higher temperature ? Why ?
Answer C16):
Gate leakage is exponentially dependent upon temperature.

Question C17) How to reduce short channel effects ?
Answer C17):
Performance improvement requirement drive aggressive technology scaling, resulting
in shortening channel length. Shrinking channel length causes loss of control-ability
of gate over the channel depletion region, mainly because of the charge sharing from
source or drain.

Short channel effect causes reliability issues, as channel length reduction means
absence of pinchoff, shift in threshold voltage(Vt), drain induced barrier lowering and
increased hot electron sensitivity.

Thinning gate oxide and using shallow source/drain junctions are effective mechanisms
for preventing short channel effect. Thin-film SOI MOSFET are known to have less
sensitivity to short channel effect. Recently tri-gate has emerged as a completely new
way of fabricating transistors, which one can say addresses short channel length effect.

Question C18) What are DCAP cells ?
Answer C18)
Circuits are sensitive to noise glitches or spikes. Global distribution networks like power
grid are major source of glitches. When a large number of locally clustered device
switch simultaneously, a large amount of current is drawn from the power network.

This instantaneous large current causes voltage to droop for a small amount of time
while devices are switches, this is called dynamic IR drop or Instantaneous Voltage
Drop (IVD). It is very common in high speed memories, which have potentially
thousands of cells switching at a time.

If capacitance is increased between VDD & VSS (rail to rail), VDD node becomes
more resistant to the effects of IVD, as the capacitance acts as a charge reserve
supplying local current sinks briefly for the short time when large number of devices are
switching.

As such, DCAP cells which are nothing but capacitors are added to the areas of an
IC that otherwise have no cells or the area where large simultaneous switching is
expected(memory). However, DCAP cells normally come with a serious down-side. They
are leaky devices and causes extra power dissipation, hence they need to be carefully
used.

Question C19) Why is NAND preferred over NOR in CMOS design/fabrication ?
Answer C19)
NANDs are faster than NOR because NAND has NMOS devices in series where as NOR
has PMOS devices in series. NMOS devices are faster because of higher mobility of
electrons.

Side effect of this is that rising and falling delays of NOR are skewed because slower
PMOS in series makes rising transition much slower and faster NMOS in parallel makes
falling transition much faster.

Where NAND has balanced rise and fall delays. Because of stackability of NMOSes in
NAND structure leakage can be controlled by adding addition device in pull down stack.

Question C20) What happens when PMOS and NMOS devices are switched in an
inverter ?
Answer C20)
As you can see if we swap PMOS and NMOS devices in an inverter, input ‘1’ means
NMOS on and hence output is pulled up, similarly input ‘0’ means PMOS on and output
is pulled down, the circuit behaves as an buffer and not inverter anymore.

NMOS on top would not be able to pass complete VDD to output so output will not rise
above VDD-Vth(Threshold Voltage) similarly PMOS would not pull down output all the

way to VSS, but it would only pull it down to VSS+Vth.

Figure 30. PMOS & NMOS swapped.

Question C21) What is charge sharing?
Answer C21)

Figure 31. Charge sharing.

In the above mentioned picture, let’s say that initially Va=0, so charges stored on Ca
capacitor is 0 as charge Q = CV. Let’s say that Vb > 0 and hence there is some charge
stored on Cb capacitor, which will be Qb = CbVb. When switch is closed, nodes a & b

are shorted and depending on the value of Ca compared to Cb, charge transfers from
Cb to Ca. New capacitance is Ca+Cb, because Ca and Cb are in parallel now. Because
total charge remains the same after switch is closed, we can say following :

CbVb = (Ca+Cb)Vb’ [Previously node ‘a’ had zero charge, and node ‘b’ had CbVb
charge]

Here Vb’ is the voltage on node b after switch is closed and Vb is voltage on node ‘b’
before switch is closed.

If Ca =~ 0 or Cb >>> Ca, then Vb’ = Vb, in all other cases Vb’ << Vb.

This means unless Ca is very small compared to Cb node ‘b’ voltage will drop. This is
the effect of charges sharing. When two capacitors are shorted depending on the
capacitor values, charge is shared or transferred from one capacitor to another and
voltage can droop on one of the node. Bigger the value of Ca, more charge will
move(transfer) from Cb to Ca and when charges moves away from a node, the voltage
at that node drops because voltage at a node is nothing but the charge(potential)
difference between the node in question and charge at ground(which is zero). In other
words a node can glitch up or down and if downstream there is a sequential element, it
can capture glitch and cause false state to be captured and your circuit to malfunction.

Figure 32. Charge sharing in stacked CMOS gates.

Question C22): What can you do to save power ?
Answer C22):
This is a generic question. In CMOS design following are the main components of
power.

 Leakage Power Components.
 Power caused by current flow that occurs regardless of voltage transitions,

mostly from sub-threshold current of “off” transistors. Scales exponentially
with voltage and temperature.

 Leakage Power reduction technique.
 This is usually trade off with performance. You can use long channel

devices to reduce leakage. High threshold voltage (Vt) transistors are less
leaky. Both degrade performance of the device.

 Downsize devices to reduce leakage. Hurts performance.
 Process techniques/Dielectric properties help reduce leakage.

 Dynamic Power components
 This is the the power dissipation caused by switching signals.
 Power = C*V^2*f
 More accurately Dynamic Power = Activity Factor * C * V^2 * f + Short

Circuit Power + Glitch Power.
● Sometimes a more effective measure of dynamic power is dynamic

capacitance.
● Dynamic Capacitance =

 Dynamic power reduction techniques (This is essentially minimize : Activity
Factor * C * V^2 * f + Short Circuit Power + Glitch Power.)

 Reduce Activity Factor: Mainly by Gating Clocks & Data. Don’t let them
toggle when they’re not needed to be active. This is sometimes called
toggle filtering as well.

 Reduce Capacitance : Reduce capacitance on high activity nodes. Do
topological optimization to minimize wire length. Increase spacing of the
wires. In general you want to shoot for 50% wire capacitance and 50%
device capacitance (gate + diffusion)

 Short circuit and Glitch power are generally marginal in good design. You
want to make sure slew rates are good and avoid other situation that
cause short circuit current.

 Downsize devices where you can afford to reduce device capacitance.
Enable downsizing.

 Static Power components.
 This is the power dissipation because of the bias current in IO or Analog

circuits. It’s independent of frequency and it’s not the leakage power.
 Static Power reduction techniques.

 Analog techniques to address bias current.

Static Timing Analysis Questions and
Answers.

Question T1) What is setup time ?
Answer T1)
For any sequential element e.g. latch or flip-flop, data needs to be stable when clock-
capture edge is active. Actually data needs to be stable for a certain time before clock-
capture edge activates, because if data is changing near the clock-capture edge,
sequential element (latch or flip-flop) can get into a metastable state and can capture
unintended value at the output.

The time requirement that data be stage for before the clock capture edge activates is
called the setup time of that sequential element.

Question T2) What is hold time ?
Answer T2)
For any sequential element e.g. latch or flip-flop, data needs to be held stable when
clock-capture edge is active. Actually data needs to be held stable for a certain time
after clock-capture edge deactivates, because if data is changing near the clock-capture
edge, sequential element can get into a metastable state and can capture unintended
value at the output.

This time requirement that data needs to be held stable for after the clock capture-edge
deactivates is called hold time requirement for that sequqntial.

Question T3): What does the setup time of a flop depend upon ?
Answer T3):
Setup time of a flip-flop depends upon the Input data slope, Clock slope and Output
load.

Question T4): What does the hold time of a flip-flop depend upon ?
Answer T4):
Hold time of a flip-flop depends upon the Input data slope, Clock slope and Output
load.

Question T5): Describe a timing path.
Answer T5):
For standard cell based designs, following figure illustrates basic timing path. Timing
path typically starts at one of the sequential (storage element) which could be either a
flip-flop or a latch.

The timing path starts at the clock pin of the flip-flop/latch. Active clock edge on this
element triggers the data at the output of such element to change. This is the first
stage delay which is also called clock -> data out(Q) delay.

Then data goes through stages of combinational delay and interconnect wires. Each of
such stage has it’s own timing delay that accumulates along the path. Eventually the
data arrives at the sampling storage element, which is again a flip-flop or a latch.

That’s where data has to meet setup and hold checks against the clock of the receiving
flip-flop/latch. Also notice for the timing paths in the same clock domain, generating
flip-flop clock and sampling flip-flop clocks are derived from a single source, which is
called the point of divergence.

In reality, actual start point for a synchronous clock based circuits is the first instance
where clocks branch off to generating path and sampling path as shown here in the
picture, which is also called point of divergence.

To simplify analysis we agree that clock will arrive at very much a fixed time at the
clock pin of all sequentials in the design. This simplified the analysis of the timing path.
from one sequential to another sequential.

Figure 33. Timing path from one Flipflop to another Flipflop.

Question T6): How do you fix timing path from latch to latch ?
Answer T6):
Latch to latch setup time violation is fixed just like flop to flop path setup time violation,
where you either speed up the data from latch to latch by either optimizing logic count,
or speeding up the gate delays and/or speeding up wire delays.

You can speed up gates by upsizing them and you can speed up wires by either
promoting them to higher layers, or widening their width or increasing spacing or
shielding them.

You can also fix the timing issues by delaying the sampling clock or speeding up the
generating clock. Latch to latch hold violations have inherent protection of a phase or
half a clock cycle.

Question T7): If hold violation exists in design, is it OK to sign off design? If not, why?
Answer T7):
No, hold violations are functional failures. Unlike setup violations, which go away
with reduced frequency, hold violations are frequency independent and are functional
failures as mentioned earlier.

Question T8): Explain CTS (Clock Tree Synthesis) flow.
Answer T8):
The goal of the CTS flow is to minimize the clock skew and the clock insertion delay.
This is the flow where actual clock distribution tree is synthesized. Before CTS timing
tools use ideal clock arrival times. After CTS real clock distribution tree is available so
real clock arrival times are used.

Question T9): What is metastability and what are it’s effects ?
Answer T9):
Whenever there is setup or hold time violations in a flip-flop, it enters a state where
its output is unpredictable. This state of unpredictable output is known as metastable
state.

It’s also called quasi stable state. At the end of metastable state, the flip-flop settles
down to either '1' or '0'. The whole process is known as metastability.

Question T10) What is the difference between a latch and a flip-flop.
Answer T10):
Latch is level sensitive device, while flip-flop is edge sensitive. Actually a D flip-flop is
made from two back to back latches, in master-slave configuration.

A low level master latch is followed by a high level slave latch to form a rising edge
sensitive D flip-flop. Latch is made using fewer devices hence lower power compared to
flip-flop, but flip-flip is immune to glitches while latch will pass through glitches.

Question T11) What is clock skew ?
Answer T11):
In synchronous circuit design, usually a gridded clock is used. Gridded clock means, at

least for parts of the design clock has to arrive at the same time. In reality clock arrives
at different times at different clock receivers in the design. This phenomenon of clock
arriving at different times at different places is called ‘clock skew’.

This could happen because of several reasons, device delay variation because of
threshold voltage and channel length variation, on chip device variation, differing
interconnect/wire delays, interconnect delay variation, temperature variation, capacitive
coupling, varying receiver load, bad clock distribution tree design.

Skew could help or hurt in your design. If in reality clock arrives later than expected
at a sampling element, and if there is minimal data delay from previous sampling
element, new data can race through from the previous sampling element and can get
inadvertently captured at the sampling element where clock arrives late.

 Or if there is enough of data delay from previous sampling element to the current
element, the late arriving clock compared to data can help meet setup requirement
at the sampling element. Following figure describes the false data capture becuase of
clock being late.

Figure 34. False data capture because of late clock (clock skew)

Question T12) What happens to delay if you increase load capacitance?
Answer T12):
Usually device slows down if load capacitance is increased. Device delay depends on
three parameters, 1) the strength of device, which usually is the width of the device
2) input slope or slew rate and 3) output load capacitance. Increasing strength or the
width increases self load as well.

Question T13) What is clock-gating ?
Answer T13)
Clock gating is a power saving technique. In synchronous circuits a logic gate (AND)
is added to the clock net, where other input of the AND gate can be used to turn off

clock to certain receiving sequentials which are not active, thus saving power because
of toggling clock.

Question T14) How to avoid metastability ?
Answer T14)
If we ensure that input data meets setup and hold requirements, we can guarantee
that we avoid metastability. Sometimes it’s not possible to guarantee to meet setup/
hold requirements, especially generating signal is coming from a different clock domain
compared to sampling clock.

In such cases, what we do is place back to back flip-flops and allocate extra timing
cycles of clocks to sample the data. Such a series of back to back flops is called a
metastability hardened flop.

Essentially what we’re doing is that we allow first flip-flop to potentially go metastable,
during first sampling clock cycle and we give first flop a full sampling clock cycle to
recover from metastability. If within first cycle first flop recovers to correct value, we
capture correct value at output second flip-flop at begging of second clock cycle. If
first flop recovers to wrong stage we’ve to wait for one more cycle i.e. beginning of 3rd
cycle of sampling clock to capture the correct value.

Sometimes it’s possible that first flop takes longer than one sampling clock cycle to
recover to stable value, in which case 3 flip-flops in series can be used. More flops in
series reduces the failure in capturing the correct value at output at expense of more
number of cycles.

Question T15) Explain signal timing propagation from one flip-flop to another flip-flop
through combinational delay.
Answer T15)
Following is a simple structure where output of a flop goes through some stages of
combinational logic, represented by pink bubble and is eventually samples by receiving
flop. Receiving flop, which samples the FF2_in data, poses timing requirements on the
input data signal.

The logic between FF1_out to FF2_in should be such that signal transitions could
propagate through this logic fast enough to be captured by the receiving flop. For a flop
to correctly capture input data, the input data to flop has to arrive and become stable

for some period of time before the capture clock edge at the flop.

This requirement is called the setup time of the flop. Usually you'll run into setup time
issues when there is too much logic in between two flop or the combinational delay is
too small. Hence this is sometimes called max delay or slow delay timing issue and the
constraints is called max delay constraint.

In figure there is max delay constraint on FF2_in input at receiving flop. Now you
can realize that max delay or slow delay constraint is frequency dependent. If you
are failing setup to a flop and if you slow down the clock frequency, your clock cycle
time increases, hence you've larger time for your slow signal transitions to propagate
through and you'll now meet setup requirements.

Typically your digital circuit is run at certain frequency which sets your max delay
constraints. Amount of time the signal falls short to meet the setup time is called setup
or max, slack or margin.

Figure 35. Signal timing propagation from flip-flop to flip-flop

Question T16) Explain setup failure to a flip-flop.
Answer T16)
Following figure describes visually a setup failure. As you can see that first flop releases
the data at the active edge of clock, which happens to be the rising edge of the clock.
FF1_out falls sometime after the clk1 rises.

The delay from the clock rising to the data changing at output pin is commonly referred
to as clock to out delay. There is finite delay from FF1_out to FF2_in through some
combinational logic for the signal to travel.

After this delay signal arrives at second flop and FF2_in falls. Because of large delay
from FF1_out to FF2_in, FF2_in falls after the setup requirement of second flop,
indicated by the orange/red vertical dotted line. This means input signal to second flop
FF2_in, is not held stable for setup time requirement of the flop and hence this flop
doesn't correctly capture this data at it's output.

As you can see one would've expected 'Out' node to go high but it doesn't because of
setup time or max delay failure at the input of the second flop. Setup time requirement
dictates that input signal be steady during the setup window (which is a certain time
before the clock capture edge).

As mentioned earlier if we reduce frequency, our cycle time increases and eventually
FF2_in will be able to make it in time and there will not be a setup failure. Also notice
that a clock skew is observed at the second flop. The clock to second flop clk2 is not
aligned with clk1 anymore and it arrives earlier, which exacerbates the setup failure.

This is a real world situation where clock to all receivers will not arrival at same time
and designer will have to account for the clock skew. We'll talk separately about clock
skew in details

Figure 36. Setup/Max delay failure to a flip-flop.

Question T17) Explain hold failure to a flip-flop.
Answer T17)
Like setup, there is a 'Hold' requirement for each sequential element (flop or a latch).
That requirement dictates that after the assertion of the active/capturing edge of the
sequential element input data needs to be stable for a certain time/window.

If input data changes within this hold requirement time/window, output of the
sequential element could go meta-stable or output could capture unintentional input
data. Therefor it is very crucial that input data be held till hold requirement time is met
for the sequential in question.

In our figure below, data at input pin 'In' of the first flop is meeting setup and is
correctly captured by first flop. Output of first flop 'FF1_out' happens to be inverted
version of input 'In'.

As you can see once the active edge of the clock for the first flop happens, which is
rising edge here, after a certain clock to out delay output FF1_out falls. Now for sake of
our understanding assume that combinational delay from FF1_out to FF2_in is very very
small and signal goes blazing fast from FF1_out to FF2_in as shown in the figure below.

In real life this could happen because of several reasons, it could happen by design
(imagine no device between first and second flop and just small wire, even better think
of both flops abutting each-other), it could be because of device variation and you
could end up with very very fast device/devices along the signal path, there could be
capacitance coupling happening with adjacent wires, favoring the transitions along the
FF1_out to FF2_in, node adjacent to FF2_in might be transitioning high to low(fall)
with a sharp slew rate or slope which couples favorably with FF2_in going down and
speeds up FF2_in fall delay.

In short in reality there are several reasons for device delay to speed up along the
signal propagation path. Now what ends up happening because of fast data is that
FF2_in transitions within the hold time requirement window of flop clocked by clk2 and
essentially violates the hold requirement for clk2 flop.

This causes the the falling transition of FF2_in to be captured in first clk2 cycle where
as design intention was to capture falling transition of FF2_in in second cycle of clk2.

In a normal synchronous design where you have series of flip-flops clocked by a grid
clock(clock shown in figure below) intention is that in first clock cycle for clk1 & clk2,
FF1_out transitions and there would be enough delay from FF1_out to FF2_in such
that one would ideally have met hold requirement for the first clock cycle of clk2 at
second flop and FF2_in would meet setup before the second clock cycle of clk2 and
when second clock cycle starts, at the active edge of clk2 original transition of FF1_out
is propagated to Out.

Now if you notice there is skew between clk1 and clk2, the skew is making clk2 edge
come later than the clk1 edge (ideally we expect clk1 & clk2 to be aligned perfectly,
that's ideally !!). In our example this is exacerbating the hold issue, if both clocks
were perfectly aligned, FF2_in fall could have happened later and would have met hold
requirement for the clk2 flop and we wouldn't have captured wrong data !!

Figure 37. Hold/Min delay requirement for a flop.

Question T18): How do you synchronize between 2 clock domains?
Answer T18):
There are two ways to do this.
1) Asynchronous FIFO,
2) Synchronizer.

Question T19) STA tool reports a hold violation on following circuit. What would you
do ?
Answer T19)

Figure 38. Hold/Min delay requirement for a flop.

If you go through previous question about hold violation failure, you’ll realize that
hold violation normally arises when generating clock and sampling clock are physically
separate clocks and because usually there is large clock skew between the clock to the
generating flop and the clock to sampling flop.

In this example we’re referring to the hold violation reported by tool where the timing
path starts at the CLK pin goes through the Q pin through buffer, MUX and comes back
to D input pin of the same flop and ends there.

It is obvious that generating CLK edge and sampling CLK is essentially the same edge.
This path would never have a real hold violation as we’re referring to the same CLK
edge. Many times STA tools have limitations and it doesn’t realize this situation.

Because the data is released by the very active edge of CLK, against which the hold
check is performed, we’ll never have a hold violation as long as combined delay for
CLK -> Q, buffer and MUX is more than the intrinsic hold requirement of the flop.
Remember from the previous question about hold time, that sequenatials(flop or latch)

have intrinsic hold time requirement which would be more than zero ps in most of the
cases.

The key to understand here is that we’re referring to the same CLK edge hence no CLK
skew and no hold violation.

Circuit Modelling Questions and
Answers.

Question M1): How does CAD tool model standard cell behavior ?
Answer M1):
There are several model available, e.g. constant voltage source, constant current
source. Many times it uses a look up table method which extrapolates based on
available data.

Question M2): How is RC delayed modelled by tools ? What are the RC delay models ?
Answer M2):
RC delay is modeled as model of varying degree of accuracy.
Most popular model for RC network is Elmore delay model. If you assume that your
RC is network is composed of segment of R resistance and C capacitance, following
represents the RC structure.

Figure 39. Elmore delay model.

Question M3): What’s the equation for Elmore RC delay ?
Answer M3):
For the above mentioned picture, Elmore delay is following
Total Delay at node B = R1C1 + (R1+R2)C2
If this modular structure is extended than delay at the last node can be represented as
following.

Total Delay at node N = R1C1 + (R1+R2)C2 + (R1+R2+R3)C3 + …. (R1+R2+....+RN)
CN

Verilog Questions and Answers

Question V1) What is the difference between blocking and non-blocking statements in
Verilog ?
Answer V1):
Verilog has two types of procedural assignment statements 1) blocking and 2) non-
blocking. Corresponding assignment operators are = and <=. The blocking assignment
statement (=) behaves much like in traditional programming languages. The whole
statement is done before execution passes on to the next statement. The non-blocking
assignment statement (<=) evaluates all the right-hand sides for the current time unit
and assigns the left-hand sides at the end of the time unit. For example,

// Blocking and non-blocking assignment

module blocking;
reg [0:2] X, Y;
initial begin: init1
X = 5;
#1 X = X + 1; // blocking procedural assignment
Y = X + 1;

$display("Blocking: X= %b Y= %b", X, Y);
X = 5;
#1 X <= X + 1; // non-blocking procedural assignment
Y <= X + 1;
#1 $display("Non-blocking: X= %b Y= %b", X, Y);
end
endmodule

produces the following output:
Blocking: X= 110 Y= 111
Non-blocking: X= 110 Y= 110

The effect is that for all non-blocking assignments use the old values of the variables at
the beginning of the current time unit and assigns the registers new values at the end
of the current time unit. This reflects how register transfers occur in some hardware
systems.
Blocking procedural assignment is used for combinational logic and non-blocking
procedural assignment for sequentials.

Question V2): Why would you use a Verilog Pre-processor?
Answer V2):
It’s mainly used for certain loop constructs for multiple instantiations

Misc. Questions with Answers

Question S1): What is a low pass filter circuit ?
Answer S1):
It is a filter that passes low-frequency signals. It attenuates frequencies that go beyond
the cut-off frequency

Reference:
http://en.wikipedia.org/wiki/Low-pass_filter

Question S2): What is a boost converter ?
Answer S2):
A boost converter is an electronic system that allows attaining a greater DC level output
compared to the level of its input.

Reference
http://en.wikipedia.org/wiki/Boost_converter

Question S3): Why is common collector configuration not used for amplifier?
Answer S3):
Because it doesn't amplify

Question S4): How to improve the linearity of the common source amplifier?
Answer S4):
One way is to tie source to the body node to remove the body effect from changing the
threshold voltage.

http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Boost_converter
http://en.wikipedia.org/wiki/Boost_converter
http://en.wikipedia.org/wiki/Boost_converter
http://en.wikipedia.org/wiki/Boost_converter
http://en.wikipedia.org/wiki/Boost_converter
http://en.wikipedia.org/wiki/Boost_converter
http://en.wikipedia.org/wiki/Boost_converter
http://en.wikipedia.org/wiki/Boost_converter
http://en.wikipedia.org/wiki/Boost_converter
http://en.wikipedia.org/wiki/Boost_converter
http://en.wikipedia.org/wiki/Boost_converter
http://en.wikipedia.org/wiki/Boost_converter
http://en.wikipedia.org/wiki/Boost_converter

