
SpyGlass® Auto Verify
Submethodology (for GuideWare
2019.06)

Version P-2019.06-SP1, September 2019

Verification ContinuumTM

Copyright Notice and Proprietary Information
©2019 Synopsys, Inc. All rights reserved. This Synopsys software and all associated
documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the
terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated
documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader's responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth
at http://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Free and Open-Source Software Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are available in
the product installation.

Third-Party Links
Any links to third-party websites included in this document are for your convenience
only. Synopsys does not endorse and is not responsible for such websites and their
practices, including privacy practices, availability, and content.

www.synopsys.com

Contents

Preface..7
About This Book .. 7
Contents of This Book ... 8
Typographical Conventions ... 9

Introduction to SpyGlass Auto Verify Methodology11
Introduction.. 11

Tool and Methodology Version ...12
References ...12

RTL Issues Causing Functional Failures.......................................13
FSMs and Related Issues... 14
Redundant Logic ... 18
X Generation ... 19

Using SpyGlass Auto Verify Methodology to Reduce Functional
Failures ...21

Prerequisites for Functional Verification ... 23
Creating a Setup for Functional Verification.. 24
Performing Design Audit ... 25

Rules to Cover the Aspects of Verification Audit25
Performing Functional Verification.. 27

Verifying FSM and Case Statements ...27
Identifying Deadcode and Redundancy ...30
Identifying the Cause for X Generation ...31
Analyzing Complexity of RTL Modules and FSMs.......................................32
Tips for Functional Verification...33
v
Synopsys, Inc.FeedbackFeedbackFeedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Contents'

vi
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Contents'

Preface
About This Book
The SpyGlass® Auto Verify sub-methodology guide describes the
methodology of using the SpyGlass Auto Verify solution.
7
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Preface'

Contents of This Book

Preface
Contents of This Book
The SpyGlass Auto Verify sub-methodology guide has the following
sections:

Section Description
Introduction to SpyGlass
Auto Verify Methodology

Provides introduction of SpyGlass Auto Verify solution.

RTL Issues Causing
Functional Failures

Describes major problems related to RTL coding that are poorly
covered by traditional verification solutions.

Using SpyGlass Auto Verify
Methodology to Reduce
Functional Failures

Describes step-by-step solution to reduce functional failures in a
design by using the SpyGlass Auto Verify solution
8
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Preface'

Typographical Conventions

Preface
Typographical Conventions
This document uses the following typographical conventions:

The following table describes the syntax used in this document:

To indicate Convention Used
Program code OUT <= IN;

Object names OUT

Variables representing
objects names

<sig-name>

Message Active low signal name '<sig-name>' must end
with _X.

Message location OUT <= IN;

Reworked example
with message removed

OUT_X <= IN;

Important Information NOTE: This rule...

Syntax Description
[] (Square brackets) An optional entry
{ } (Curly braces) An entry that can be specified once or multiple

times
| (Vertical bar) A list of choices out of which you can choose

one

... (Horizontal
ellipsis)

Other options that you can specify
9
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Preface'

Typographical Conventions

Preface
10
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Preface'

Introduction to SpyGlass
Auto Verify Methodology
Introduction
A typical RTL design contains complex control and data logic that is hard to
be exhaustively verified. State machines, conditional control branches, and
other design constructs perform complex functions needed in highly
integrated heterogeneous systems. Ensuring the correctness of such
systems is a difficult task out of the reach of a single verification tool.

Traditionally, design functionality is verified using basic lint, functional
simulation, and formal verification. While lint can identify and report simple
RTL issues, it is not intended to verify functionality of the design where
multiple RTL constructs interact. On the other hand, simulation can identify
functional bugs but is in no way exhaustive and can easily miss corner case
issues. Assertion verification covers specific aspects of design functionality
such as exhaustive protocol verification but requires in-depth formal
expertise and significant time to write and verify assertions in a highly
iterative process.

The need is to identify critical design intent automatically and exhaustively
verifying it to catch corner case bugs that may not be identified by other
tools in the verification flow.

This document introduces a methodology to perform automatic verification
of critical design components such as finite-state machines (FSMs), case
11
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Introduction to SpyGlass Auto Verify Methodology'

Introduction

Introduction to SpyGlass Auto Verify Methodology
statements, and tri-state buses using the SpyGlass® tool suite. This
document is useful to novice and advanced users of SpyGlass. Advanced
users can proceed directly to the relevant sections of the document.

Tool and Methodology Version
 SpyGlass Version: Version P-2019.06-SP1

 GuideWare Version: 2019.06

References
 SpyGlass Auto Verify Rules Reference Guide

 SpyGlass Explorer User Guide
12
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Introduction to SpyGlass Auto Verify Methodology'

RTL Issues Causing
Functional Failures
Designs described at the RTL level are subject to many functional failures
due to incomplete specification, incorrect conceptual understanding of
specification, and unintentional bugs introduced during RTL coding.

The following are the major problems related to RTL coding that are poorly
covered by traditional verification solutions, such as functional simulation:
 FSMs and Related Issues

 Redundant Logic

 X Generation
13
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'RTL Issues Causing Functional Failures'

FSMs and Related Issues

RTL Issues Causing Functional Failures
FSMs and Related Issues
FSMs impact designs in two different ways:
 Correctness: State machines typically contain many states and a high

number of transitions, inputs, and outputs. While writing RTL code, the
user may not get a good picture of all states and their interconnections.
This can lead to functional problems and consequently a chip failure.
Although intent verification of the state machines requires knowledge of
the design, many correctness aspects can be automatically verified.
Common issues in state machines are:
 Unreachable state: An unreachable state is a state in RTL code where

the user has not created any transitions to reach it, or created
transitions that cannot be exercised by the logic controlling it. An
unreachable state indicates a functional problem or design
redundancy.

 Deadlock state: A deadlock state is a state from which no outgoing
transitions exist or outgoing transitions are not exercisable due to
control logic. When a state machine reaches such a state, it cannot
transition to a different state.

 Dead transition: A dead transition is a state machine transition that is
present in RTL code but cannot be exercised. Dead transitions may
cause deadlock or unreachable states.

Designers must ensure that state machines present in their RTL are free
of such bugs.
An FSM illustrating the above issues is shown in Figure 1.
14
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'RTL Issues Causing Functional Failures'

FSMs and Related Issues

RTL Issues Causing Functional Failures
FIGURE 1. Functional issues with FSMs

 Implementation considerations:
Several FSM attributes can be used to measure the quality of
implementation in RTL. Examples of these attributes are:
 the number of states, transitions, inputs and outputs

 the depth

 the encoding style

 presence or absence of an initial state
Designers must tune their design using these metrics to achieve the
15
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'RTL Issues Causing Functional Failures'

FSMs and Related Issues

RTL Issues Causing Functional Failures
desired design objectives such as area, timing, and power goals.
For a detail discussion on the metrics impacting implementation and
verification of state machines, refer to white paper “A Systematic
Approach to Verifying FSMs”.
Since FSM are mostly implemented using case statements, many issues
around the correct usage of these constructs. In fact, their usage entails
pitfalls that can cause chip failures. We will discuss two problems that
may arise in case statements: incompletely specified case statements
and overlapping case statements.
A case statement lists all possible input values under which an operation
is performed. What will be the behavior of a design if one possible input
assignment is not specified in the case statement body? The following
example illustrates an incompletely specified case statement.

always @(posedge clk2) begin
 case (bs)
 4'b0000: out <= 0;
 4'b1000: out <= 0;
 4'b1010: out <= 1;
 4'b0101: out <= 1;
 4'b1111: out <= 1;
 endcase
What would be the value of out when bs takes the value 1001? By
default, synthesis tools preserve the previous value of out in this case. If
synthesis tools are given the flexibility of assigning out to either 0 or 1
when bs = 1001, the circuit can be significantly optimized. When the
user knows that bs never takes the value 1001, he can use the pragma,
“synopsys full_case” to declare a case statement as “complete”; in this
case any unspecified case value in the case statement body is a “don’t
care”. When using this pragma, a designer can easily overlook design
functionality and incorrectly declare case-statement to be completely
specified. This is particularly true when a design is changed in the
context of re-use.
Designers must verify that a case statement declared as “full_case” is
completely specified by ensuring that any unspecified term is not
produced in the design.
16
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'RTL Issues Causing Functional Failures'

FSMs and Related Issues

RTL Issues Causing Functional Failures
When multiple conditional branches are present and more than one
condition is true at the same time, there is a contention of what branch
should be executed. Synthesis tools introduce priority-decoding logic
that will prioritize the first branch in the order of appearance in the RTL
code. The following example illustrates overlapping case items and the
issue described above. In this example, the item 1010 and 10x0 are
overlapping. If bs takes the value 1010, out takes 0 or 1 depending on
the branch chosen. In the presence of a priority encoder (introduced
automatically by synthesis tools) the first case item, 10x0, will win and
the output will be predictably set to 0.

// Case statement using bs assignments as case items
always @(posedge clk2) begin
casex (bs)
4'b0000: out <= 0;
4'b10x0: out <= 0;
4'b1010: out <= 1; // Overlaps with 10x0
4'b0101: out <= 1;
4'b1111: out <= 1;
endcase
If a case statement does not have overlapping items, the priority
encoder inserted by synthesis tools is not required and the
implementation can be optimized. Unfortunately, synthesis tools do not
have the intelligence to determine whether case statements are
overlapping or not. To overcome this shortcoming, the pragma,
“synopsys parallel_case”, indicates that the item has no overlapping
case statements. Using this pragma, synthesis tools can further
optimize the implementation. Now, designers can easily mark a case
statement with “parallel_case” while there are overlapping case items.
This may particularly happen when the RTL is modified for re-use. When
a case-statement has overlapping items and is marked as
“parallel_case”, a functional failure can occur.
Designers must verify that case statements marked as “parallel_case”
have no overlaps, or overlapping values are not reachable. For example
if 10x0 and 1x00 appear in a test case but the case-statement variable
cannot take 1000 then there will not be any issue in the design.
17
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'RTL Issues Causing Functional Failures'

Redundant Logic

RTL Issues Causing Functional Failures
Redundant Logic
Complex RTL coding styles can hide design redundancies that are not
apparent to the naked eyes. Unintentional redundancies may indicate
serious functional problems. If these redundancies are not optimized
during implementation, they can impact a chip’s quality (timing, area,
power). Redundancies are not always local to given block or area of RTL
code. Figure 2 illustrates design redundancy caused by convergence of logic
across a sequential layer of flip-flops. Once the clock is active, the signal
and_out can be simplified to a constant 0 since one of the flip-flops
flop1out_reg or flop2out_reg will store the value 0.

FIGURE 2. An example of redundant Logic driving the port and_out

This form of redundant logic is usually caused by branching constructs such
as if-then-else and case-statements, which can break the data flow and
result in dead code. Designers must ensure the absence of redundant RTL
code of the form shown above.
18
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'RTL Issues Causing Functional Failures'

X Generation

RTL Issues Causing Functional Failures
X Generation
Arrays are often used in RTL code. When the array range is defined, the
array must be always accessed within the given range. In a complex
design, often arrays are accessed at a variable index, where the index is a
complex expression. Improperly designed index logic can go out of bound
causing chip failure.

The following RTL code illustrates a case of array bound violation when the
counter, “count”, reaches the value 2.

module test (out1, out2, in1, in2, clk, reset);
output out1, out2;
input clk, reset;
input [2:0] in1, in2;
reg [2:0] out2;
reg [1:0] count;
assign out1=in1[count+1];
always @(posedge clk)
 begin
 if(reset == 0) count= 0;
 else if(count == 2'b10) count = 0;
 else count=count+1;
end
always
out2[count+1]=in2[count];
endmodule

Designers must verify that no arrays in the RTL are accessed out of defined
range for the array.

Tristate buses can also result in Xs in the design. In tristate buses, multiple
tristate gates with enables drive the same net. For the buses to function
correctly, one and only one enable must be on at a time. Otherwise, either
19
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'RTL Issues Causing Functional Failures'

X Generation

RTL Issues Causing Functional Failures
the bus will have no drivers or it will be multi-driven. Designers must verify
that all buses in their design have one and only one driver at all times.
20
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'RTL Issues Causing Functional Failures'

Using SpyGlass Auto
Verify Methodology to
Reduce Functional
Failures
This section provides a step-by-step solution to reduce functional failures
in a design by using the SpyGlass Auto Verify solution.

Using a systematic and step-by-step approach enables you to sign off
automatic functional verification of important aspects of an early stage RTL
design.

The following table shows the stages and their corresponding goals of this
methodology:

Stage Summary Goal
Prerequisites for Functional
Verification

Run design read, and specify
design information, such as
clocks, resets, design
initialization information, and
design modes.

None

Creating a Setup for Functional
Verification

Generate clocks and resets for
the design.

adv_lint_setup
21
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Using SpyGlass Auto Verify Methodology to Reduce Functional Failures
Performing Design Audit Check the quality of setup by
checking the correctness and
completeness of the design
initial state and validating
FSMs.

adv_lint_struct

Performing Functional Verification Check problems related with
FSMs, and identify dead code,
static nets, and causes of x
generation in the design.

adv_lint_verify

Stage Summary Goal
22
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Prerequisites for Functional Verification

Using SpyGlass Auto Verify Methodology to Reduce Func-
Prerequisites for Functional Verification
Before you start functional verification using SpyGlass Auto Verify solution,
you need to ensure that design read is complete, and basic lint issues have
been fixed.

You should also gather as much information about the design environment
as possible. The following information about the design is important when
you verify design functionality:
 Clocks: clock periods are important for functional verification and if the

design specification has design clocks and their period then extract them
for use during verification.

 Resets: resets and their active values are important for verification;
gather any reset information from the design spec for use during
verification

 Design initialization: design initial state, or how the design can be
initialized is an important aspect of design functionality that need to be
extracted for use during verification.

 Design modes: if you want to analyze the design for a given mode, then
gather the information for verification setup.
23
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Creating a Setup for Functional Verification

Using SpyGlass Auto Verify Methodology to Reduce Functional Failures
Creating a Setup for Functional Verification
Run the adv_lint_setup goal to create a setup.

During setup, clocks and resets are identified in a design. This step is
required if the clock and reset information is not available. If the design
has been analyzed using SpyGlass-CDC, the setup information used during
CDC verification can be reused for SpyGlass-Auto Verify analysis.
24
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Performing Design Audit

Using SpyGlass Auto Verify Methodology to Reduce Func-
Performing Design Audit
Run the adv_lint_struct goal to validate the quality of setup, such as
initialization details of registers and summary of properties in the design. It
is a preparation step for identifying FSMs in the design and for getting an
audit of all the properties that will be verified next.

In this stage, you can analyze the following about the design:
 Initialization: During power-on, a design is brought to an “initial state”.

The correctness and completeness of initial state is important for
verification. If the state computed is not a valid initial state then the
verification result is not reliable. Correct initialization and its impact are
further described in later sections in this document.

 Candidate checks for verification: During audit, all structures such as
FSMs are extracted but they are not verified. Reviewing the total
number of checks allows you to estimate the complexity of the design
and estimate the run-time needed for verification.

Rerun the goal if RTL or constraints file are updated for missing clocks,
resets, black-boxes description and low initialization. User can use
following spyglass parameters for the design setup:
 Increase the value of ieffort parameter to improve quality of design

initialization
 Clocks and resets must be reviewed and frequencies should be provided

for proper verification. User can run SpyGlass Auto Verify solution by
using automatic clock and reset detection using use_inferred_clocks and
use_inferred_resets or the user can run the goal adv_lint_setup to
identify clocks and resets in the design. The results of this step must be
reviewed by the user.

Rules to Cover the Aspects of Verification Audit
The following rules of the SpyGlass Auto Verify solution cover the above
aspects of verification audit.

Rule Description
Av_Info_Case_Analysis Highlights case-analysis settings
Av_initstate01* Reports initial state of the design
25
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Performing Design Audit

Using SpyGlass Auto Verify Methodology to Reduce Functional Failures
The rules marked with “*” are always on, which indicates that they will be
run during future verification steps too. In case the setup or the design
changes, and the change adversely impact the reset for verification then
you will get setup violations by the above rules. Such violations should be
fixed with higher priority.

Av_report01* Reports statistics of properties and functional
constraints.

Av_fsminf01 Reports all the FSMs in the design
Av_fsminf02 Reports all interacting FSMs in a design.
Av_multitop01* Abort in case of multiple top level design unit
Av_init01* Reports initialization issues for the run
Av_sanity01* Reports an error if there is any issue in the

property file
Av_sanity02* Reports all the nets in the design which have

multiple drivers
Av_fsm02 Reports state transitions of an FSM which cannot

be activated
Av_case01 Reports all the sensitizable case items, which are

not specified.
Av_case02 Reports all the case statements which have

overlapping case items
Av_deadcode01 Reports redundant logic in the design
Av_bus01 Reports all the bus contentions in the design
Av_bus02 Reports all the floating buses in the design
Av_dontcare01 Reports sensitizable X-assignments in a design
Av_range01 Reports array bound violation
Av_complexity01 Reports design characteristics and complexity for

RTL modules and FSMs in the design

Rule Description
26
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Performing Functional Verification

Using SpyGlass Auto Verify Methodology to Reduce Func-
Performing Functional Verification
Run the adv_lint_verify goal verify critical design components, such as
finite-state machines (FSMs), case statements, and tristate buses using
the SpyGlass tool suite.

This stage enables you to accomplish the following:
 Verifying FSM and Case Statements

 Identifying Deadcode and Redundancy

 Identifying the Cause for X Generation

 Analyzing Complexity of RTL Modules and FSMs

Verifying FSM and Case Statements
The rules in this category help in identifying problems related to FSMs in
the design. It reports dead states and transitions that cannot be sensitized
in an FSM.
1. Choose the proper rule parameters to run the validation.

The most common parameters are:
 Parameter detect_assign_fsm=no (default; changing to “yes” will

also detect assign style FSM in Verilog).
 Parameter detect_ifelse_fsm = no (default; changing to “yes” will

also detect if-else style FSMs).
 Parameter detect_nested_fsm = no (default; changing to “yes” will

also detect nested if-else style FSMs).
2. Resolve the Av_fsm02 violations for state transitions, which cannot be

activated. Refer to Assertion details section of auto-verify.rpt
 When status of Av_fsm02 is PASSED, it is an information message for

the user and requires no action.
 When status of Av_fsm02 is FAILED

 Activate violation to bring up FSM viewer.
27
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Performing Functional Verification

Using SpyGlass Auto Verify Methodology to Reduce Functional Failures
FIGURE 1. The FSM viewer

 Fix or remove the transition and states in FSM.

 When status of Av_fsm02 is Partially Analyzed (SpyGlass is not able
to conclude in the given amount of time), rerun the design with
following options:
 Increase assertion run-time by using the atime parameter.

 Use incremental analysis by providing the propfile parameter.

 Use the abstract parameter which applies abstraction techniques
to reduce complex verification problem into simpler and solvable
problem

Initial state appears
in a double circle
28
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Performing Functional Verification

Using SpyGlass Auto Verify Methodology to Reduce Func-
3. Resolve the violation reported by Av_case01 and Av_case02. Refer to
Assertion details section of auto-verify.rpt
 When status of rule is PASSED, it is an information message for the

user and requires no action.
 When status of rule is FAILED:

 Activate the violation to bring up incremental schematic and
waveform viewer.

 Navigate incremental schematic and waveform viewer to find the
cause of failure.

 Fix the issue.

 When status of a rule is Partially Analyzed (SpyGlass is not able to
conclude in the given amount of time), rerun the design with
following options:
 Increase assertion run-time by using the atime parameter.

 Use incremental analysis approach by providing the propfile
parameter.

 Use the abstract parameter which applies abstraction techniques
to reduce complex verification problem into simpler and solvable
problem

Rules for FMS Analysis and Verification
The following rules cover FSM analysis and verification.

Rule Description
Av_fsminf01 Reports all the FSMs in the design
Av_fsminf02 Reports all the interacting FSMs in a design.
Av_fsm02 Reports state transitions of an FSM which cannot be

activated
Av_case01 Reports all the sensitizable case items, which are not

specified.
Av_case02 Reports all the case statements which have

overlapping case items
29
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Performing Functional Verification

Using SpyGlass Auto Verify Methodology to Reduce Functional Failures
Av_fsminf01 and Av_fsminf02 reports all FSMs identified in a design and
statistics about their complexity and implementation details. These rules
do not indicate any design issues but can be used to better optimize them
for verification and implementation. Av_fsm02 reports potential bugs in the
design. Av_case01 and Av_case02 reports issues around the usage of the
pragmas: full_case and parallel_case. The goal fsm includes the above six
rules and should be run after running the goal redundancy

Identifying Deadcode and Redundancy
The rules in this category identify dead code and static nets in the design.
By eliminating redundant logic, the design size is reduced. It also helps in
correcting bugs due to an un-executable code.

To identify the dead code and redundancy issues, perform the following
actions:
1. Set appropriate parameters to run SpyGlass CDC validation.

The commonly used parameter is dead_code_scope. Set it to if to
check only for the if conditional blocks. By default, its value is
if_case.

2. Resolve the Av_deadcode01 issues in the design. Refer to the Assertion
details section of auto-verify.rpt to know the status reported by the
Av_deadcode01 rule.
Based on the status, perform appropriate actions, as described below:
 When status of Av_deadcode01 is PASSED in report, it is an

information message for the user and requires no action.
 When status of Av_deadcode01 is FAILED, then the violation is also

reported. Activate and analyze the violation. Fix or remove the dead-
code block.

 When status of Av_deadcode01 is Partially Analyzed (This happens
when SpyGlass is not able to conclude in the given amount of time).
User needs to rerun the design with following options:
 Increase assertion run-time by using the atime parameter.

 Use incremental analysis by providing the propfile parameter.
30
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Performing Functional Verification

Using SpyGlass Auto Verify Methodology to Reduce Func-
 Use the abstract parameter which applies abstraction technique to
reduce complex verification problem into simpler and solvable
problem.

Rules to Identify Deadcode and Redundancy
The following table lists all rules in this category. Depending on the project
needs the methodology can be customized to use these rules. Note that
these rules cover flip-flops, conditional statements, and simple
assignments. Therefore, the number of such checks can be very high and
consequently the run time for these rules can be high. Refer to the
performance and quality of results section later in this document for tips on
how to close verification effectively in reasonable time.

Identifying the Cause for X Generation
The rules in this category help in identifying various causes of x generation
in a design.
1. Resolve Av_bus01, Av_bus02, Av_dontcare01, and Av_range01

violations. Refer to Assertion details section of auto-verify.rpt
 When status is PASSED, it is an information message for the user and

requires no action.
 When status is FAILED:

 Activate violation to bring up waveform viewer.

 Navigate waveform viewer to find the cause of failure.

 Fix or remove the undesired array access.

 When status is Partially Analyzed (SpyGlass is not able to conclude in
the given amount of time), rerun the design with following options:
 Increase assertion run-time by using the atime parameter.

Rule Description
Av_deadcode01 Reports redundant logic in the design
Av_staticnet01 Reports globally stuck-at-0 or stuck-at-1 nets in a

design.
31
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Performing Functional Verification

Using SpyGlass Auto Verify Methodology to Reduce Functional Failures
 Use incremental analysis by providing the propfile parameter.

 Use the abstract parameter which applies abstraction techniques
to reduce complex verification problem into simpler and solvable
problem

Rules to Identify the Cause for X Generation
The rules that provide this functionality are described in the table below.

Analyzing Complexity of RTL Modules and FSMs
SpyGlass Auto Verify solution provides complexity analysis of RTL modules
and FSMs to enable the user to better understand the design, repartition
the modules and FSMs if needed, and estimate the effort required for
verification. The rule for getting complexity measures is Av_complexity01.

After running this rule:
1. Look at the spreadsheets Av_complexity01_module.csv and

Av_complexity01_fsm.csv.
2. Analyze design statistics on FSM (number of states, number of

transitions, depth, …)
3. Review the values in the column Cyclomatic Complexity. If the number

is too large for a module, consider decomposing it into smaller modules.
Typically, cyclomatic complexity greater than 100 is considered high.
Otherwise, make sure that enough test cases are written to cover all
branches as part of simulation/dynamic verification step. The number of
test cases should be greater than the cyclomatic complexity for the
module.

The main complexity measure is called cyclomatic complexity; it measures

Rule Description
Av_bus01 Reports all the bus contentions in the design
Av_bus02 Reports all the floating buses in the design
Av_dontcare01 Reports sensitizable X-assignments in a design.
Av_range01 Reports array bound violation.
32
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Performing Functional Verification

Using SpyGlass Auto Verify Methodology to Reduce Func-
the number of branches in a module or an FSM. Typically a cyclomatic
complexity of 100 is considered high. If the user encounters a large
number, he should consider decomposing the module into smaller modules.
Alternatively, he can use this number as an estimate for the number of test
cases that would be needed in a dynamic verification flow.

Other complexity measures for FSMs include the number of states, the
number of state transitions, state encoding, and depth. Other complexity
measures for modules include the number of inputs and outputs, the
number of case statements, and depth of nesting in if/else statements.

The above information is provided in two spreadsheets:
Av_complexity01_module.cvs and Av_complexity01_fsm.csv. The various
columns represent different complexity measures while the rows show the
FSMs and modules in consideration.

Tips for Functional Verification
The verification rules described in previous sections perform exhaustive
functional verification that may be run time intensive and some exhaustive
checks may not complete. SpyGlass Auto Verify solution performs two
different types of verification automatically. Users do not need to take any
step to trigger or control these verification approaches as they are done
automatically. However, they need to know the following concepts to better
understand the results reported by SpyGlass Auto Verify solution and
further improve them by iterative runs:
 Bug detection: Once the design reaches a setup for all flip-flops, known

as a state of the design, SpyGlass Auto Verify solution exhaustively
cover all possible design inputs assignment to find if a bug can occur in
this state. SpyGlass Auto Verify solution can therefore report results
indicating the “sequential depth” analyzed exhaustively. A design
verified by SpyGlass Auto Verify solution for 10 cycles, for example, can
represent millions of simulation stimulus automatically covered.

 Proof: SpyGlass Auto Verify solution can also prove a check as correct
for all possible values of flip-flops in the design (states). This analysis
involves complex mathematical modeling and proving approaches that
may or may not be possible depending on design complexity, property
complexity, clocking complexity, etc.

The following sections provide the tips that cover various aspects of
verification to improve the quality of verification and run time:
33
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Performing Functional Verification

Using SpyGlass Auto Verify Methodology to Reduce Functional Failures
 Dealing with Incomplete Results

 Dealing with Long Run Times

 Debugging Functional Checks

 Main Reasons of False Functional Checks Violations

 Considerations for Chip Level Functional Verification

 Handling Duplicate Violations

Dealing with Incomplete Results
The outcome of functional checks performed by SpyGlass Auto Verify
solution is as follow:

Both failed and partially analyzed checks require user attention as they
may represent real design bugs. When dealing with functional checks that
do not complete, that is checks that are reported as partially analyzed, you
can do the following:
 Increase the amount of time that SpyGlass spends on validating a single

property. Currently, the default run time is set to 20 seconds per
functional check. The parameter used to change the run time is called
atime.

Status Description
FAILED For a check that failed, SpyGlass provides a

simulation trace that can be loaded in the waveform
viewer by activating the violation and clicking on the
waveform viewer icon (next to schematic viewer icon
in the GUI).

PASSED You can see which checks have passed in the report
file, accessible from the GUI pull-down menu Report-
>auto-verify. You do not have to worry about these
messages, as they do not indicate any problem in the
design.

PA (Partially Analyzed) These are instances of checks that are un-concluded.
SpyGlass provides the number of cycles that have
been explored during which no violation has been
found.
34
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Performing Functional Verification

Using SpyGlass Auto Verify Methodology to Reduce Func-
 Change the engine selection for functional checks. This changes the way
verification is done. SpyGlass provides the solvemethod parameter to
invoke various engines performing functional verification. This option
takes 3 values (1, 2, 3) and depending on the design one or another
may conclude the check.

Dealing with Long Run Times
Due to the complexity of functional analysis, you will often need to run
SpyGlass iteratively with different options to sign-off the verification. The
following flow diagram describes the incremental verification capability of
SpyGlass Auto Verify solution that will enable effective iterative
verification.
35
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Performing Functional Verification

Using SpyGlass Auto Verify Methodology to Reduce Functional Failures
FIGURE 2. Incremental verification flow

SpyGlass Auto Verify solution dumps auto_verify.prp in the $CWD/
spyglass_reports/auto_verify directory. This file contains the properties
and the status, which is “off” for concluded properties and “on” for non-
concluded properties. User has the option of updating the property status.
When this property file is provided using the propfile option in incremental
(i.e. subsequent) runs, SpyGlass Auto Verify solution will check only those
properties whose status is “on”.

For detailed description and impact of atime, scope, abstract, and
solvemethod parameters and property file (propfile) for incremental
verification refer to SpyGlass Auto Verify Rules Reference Guide.

Note that any change in the setup can impact previously verified checks
and therefore they need to be run again. Once desired result is obtained in
36
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Performing Functional Verification

Using SpyGlass Auto Verify Methodology to Reduce Func-
incremental flow, it is recommended to have a file run with complete setup
to ensure changes in setup will not have adverse impact on checks
completed in previous SpyGlass runs.

Functional analysis complexity increases with the number of asynchronous
clocks in a design. Formal verification is exhaustive and involves complex
functional analysis of a design. Clock frequencies may greatly affect the
complexity of functional analysis. To understand how clock frequencies
affect the functional analysis process, consider two clocks running with a
17ns period and a 13ns period, respectively. If the rising edges of the two
clocks are aligned at time 0ns, then the next time the rising edges will
again be aligned corresponds to 221ns (the least common multiple or LCM
of two clock periods). This means that the design behaves asynchronously
for 221ns. Any functional analysis process that would exploit the repetition
(for proving a property, for example) would have to analyze the design at
least for this period of time, which may correspond to many evaluations of
logic in the design. We refer to this period as the design virtual cycle. A
high design virtual cycle number makes it hard to verify the design
functionality.

In some cases where the runs take long time, modify the clock periods to
reduce the LCM. Let us take an example.

Device A has two asynchronous clocks: clk_33 is 33ns and clk_100 is
100ns. If you specify these clock periods in the SGDC file, the LCM of the
two clock periods is (33x100) 3300ns, which is quite large. If you specify
the 100ns clock in the SGDC as being 99ns, then the Design Virtual Cycle
has been reduced to 99ns. Note that changing the clock frequency by this
amount has impacted the behavior of the design and therefore the change
should not be considered unless necessary. If such a change is introduced
it should be documented.

SpyGlass reports the design virtual cycle in terms of the number of fastest
clock cycles, as well as the number of non-overlapping edges of all clocks
covered by the design virtual cycle.

Debugging Functional Checks
In addition to RTL cross-probing and schematic highlights, failure of a
functional check will generate a waveform indicating the circumstances of
the failure. Once a violation is activated, click on the waveform-icon (close
to the schematic icon) to activate the waveform viewer. Initially, a small set
37
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Performing Functional Verification

Using SpyGlass Auto Verify Methodology to Reduce Functional Failures
of signals are loaded in the waveform; these signals are a good starting
point for debugging the waveform. You can right-click on a signal in the
waveform viewer and select “fanin” from the pop-up menu to see the set of
signals in the immediate vicinity of the selected signal for which a
waveform is available. Select all or part of these signals and click on “OK”
to load their waveform in the viewer. Note that you can cross-probe
between the waveform viewer and the RTL-viewer.

Main Reasons of False Functional Checks Violations
Functional checks violations are always genuine under given constraints. To
avoid false functional violations, it is important to properly constraint your
design. Below are some of the most important constraints impacting the
outcome of functional checks:
 Reset constraint: reset signals are used to initialize the design and they

are generally disabled during functional checks. If not specified, resets
can be randomly asserted and de-asserted to cause a functional failure.
To avoid such situation provide all resets of the design.

 Initial state: SpyGlass identifies an initial state automatically and uses it
as starting state for any functional checks. Functional checks may fail or
pass depending on the initial state(s) used in functional verification.
Always validate the initial state before investigating functional failures.
Flip-flop values for initial state as well as how the initial state is obtained
by spyglass are provided in rule Ac_initstate01.

Considerations for Chip Level Functional Verification
Typically, RTL code is written for blocks and only inter-blocks connectivity is
present at the chip level with small glue logic. For many functional checks,
once the block is verified, the same structure remains valid in the context
of the chip. For some checks however if the verification is correct at the
block level it still needs to be verified in the context of the full chip as the
block environment can make them false. To understand this aspect of
functional verification, we distinguish between the following types of
checks:
 Safety checks that ensure that something bad cannot occur in a design.

For example, bus contention should not occur in the design)
38
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Performing Functional Verification

Using SpyGlass Auto Verify Methodology to Reduce Func-
 Liveliness checks that ensures that something good must happen at
least once in a design. For example, a give state of a state machine
should be reached during the execution of the design).

The following table describes the validity of the block level checks in the
context of the SoC based on whether the check is a safety or liveliness
check:

Following are the list of safety checks in SpyGlass Auto Verify solution:
 Av_bus01: Reports all the bus contentions in the design

 Av_bus02: Reports all the floating buses in the design

 Av_case01: Reports all the sensitizable case items which are not
specified

 Av_case02: Reports all the case statements which have overlapping
case items

 Av_range01: Reports array bound violation

 Av_dontcare01: Reports sensitizable X-assignments in the design

The following checks are liveliness checks in SpyGlass Auto Verify solution:
 Av_fsm02: Reports state transitions of an FSM which cannot be

activated
 Av_deadcode01: Reports redundant logic in the design

 Av_bitstuck01: Reports whether a net is stuck to a constant value or not

Property type Block Result Block result
interpretation in
the context of Top
design

Action

Safety Pass Pass No Action

Fail Unknown Run Top design

Liveliness Pass Unknown Run Top design

Fail Fail Debug block failure
39
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Performing Functional Verification

Using SpyGlass Auto Verify Methodology to Reduce Functional Failures
 Av_staticnet01: Reports globally stuck-at-0 or stuck-at-1 nets in the
design

 Av_staticreg01: Reports all the static registers in the design which
cannot toggle

Handling Duplicate Violations
There is some overlap between rules in Spyglass Auto Verify, SpyGlass
Base, and Spyglass CDC. The following table lists rules that have the same
functionality across the three policies.

The following table lists the rules that have functionality overlap across
SpyGlass Auto Verify and SpyGlass Base products.

Rules of
SpyGlass
Auto Verify
Solution

Rules of
SpyGlass Base
Products

Structural
Rules of
SpyGlass CDC
Solution

Functionality

Av_sanity02 W415 - Reports non-tristated
nets that have multiple
drivers

Av_clkinf01 - Clock_info01 Reports all clocks in a
design

Av_rstinf01 - Reset_info01 Reports all resets in a
design
40
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Performing Functional Verification

Using SpyGlass Auto Verify Methodology to Reduce Func-
Rules of
SpyGlass Auto
Verify
Solution

Rules of SpyGlass
Base Products

Overlapping Functionality

Av_case01 STARC05-2.8.3.3 STARC05-2.8.3.3 reports a violation
when case labels of a case
statement are not complete. The
rule does not take into
consideration whether the missing
label can be functionally exercised.
Av_case01 reports a violation when
a missing case label can be
functionally exercised. Therefore,
the results of Av_case01 are more
accurate.

Av_case02 DuplicateCaseLabel-ML DuplicateCaseLabel-ML reports
overlapping case labels.
Av_case02 reports overlapping case
labels that can be functionally
exercised.

Av_dontcare01 NoAssignX-ML The NoAssignX-ML rule reports a
violation for all occurrences of X
assignments. However,
theAv_dontcare01 rule reports the
case where the condition resulting
in the X assignment can be
functionally exercised.

Av_setreset01 SetResetConverge-ML Like other functional checks, the
Av_setreset01 rule checks
functionally whether both set and
reset can become active or not.
However, the SetResetConverge-ML
rule reports only structurally if set
and reset are coming from a
common source.
41
Synopsys, Inc.Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

Performing Functional Verification

Using SpyGlass Auto Verify Methodology to Reduce Functional Failures
Av_staticnet01 FlopDataConstant,
LatchDataConstant

The Av_staticnet01 rule reports all
nets/flip-flops that have a constant
value in all reachable states. This
functionality overlaps with the
specified rules of SpyGlass Base
product.

Av_sanity03 CombLoop Both rules reports the presence of
combinational loops in a design
42
Synopsys, Inc. Feedback

mailto:support_center@synopsys.com?subject=Feedback on [SpyGlass][Documentation][Auto Verify Submethodology (for GuideWare 2018.09)]&body=Type your comments here for Chapter 'Using SpyGlass Auto Verify Methodology to Reduce Functional Failures'

	SpyGlass® Auto Verify Submethodology (for GuideWare 2019.06)
	Preface
	About This Book
	Contents of This Book
	Typographical Conventions

	Introduction to SpyGlass Auto Verify Methodology
	Introduction
	Tool and Methodology Version
	References

	RTL Issues Causing Functional Failures
	FSMs and Related Issues
	Redundant Logic
	X Generation

	Using SpyGlass Auto Verify Methodology to Reduce Functional Failures
	Prerequisites for Functional Verification
	Creating a Setup for Functional Verification
	Performing Design Audit
	Rules to Cover the Aspects of Verification Audit

	Performing Functional Verification
	Verifying FSM and Case Statements
	Rules for FMS Analysis and Verification

	Identifying Deadcode and Redundancy
	Rules to Identify Deadcode and Redundancy

	Identifying the Cause for X Generation
	Rules to Identify the Cause for X Generation

	Analyzing Complexity of RTL Modules and FSMs
	Tips for Functional Verification
	Dealing with Incomplete Results
	Dealing with Long Run Times
	Debugging Functional Checks
	Main Reasons of False Functional Checks Violations
	Considerations for Chip Level Functional Verification
	Handling Duplicate Violations

